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Abstract—System auditing is a central concern when inves-
tigating and responding to security incidents. Unfortunately,
attackers regularly engage in anti-forensic activities after a break-
in, covering their tracks from the system logs in order to frustrate
the efforts of investigators. While a variety of tamper-evident
logging solutions have appeared throughout the industry and
the literature, these techniques do not meet the operational and
scalability requirements of system-layer audit frameworks.

In this work, we introduce CUSTOS, a practical framework
for the detection of tampering in system logs. CUSTOS consists
of a tamper-evident logging layer and a decentralized auditing
protocol. The former enables the verification of log integrity with
minimal changes to the underlying logging framework, while the
latter enables near real-time detection of log integrity violations
within an enterprise-class network. CUSTOS is made practical by
the observation that we can decouple the costs of cryptographic
log commitments from the act of creating and storing log events,
without trading off security, leveraging features of off-the-shelf
trusted execution environments. Supporting over one million
events per second, we show that CUSTOS’ tamper-evident logging
protocol is three orders of magnitude (1000×) faster than prior
solutions and incurs only between 2% and 7% runtime overhead
over insecure logging on intensive workloads. Further, we show
that CUSTOS’ auditing protocol can detect violations in near real-
time even in the presence of a powerful distributed adversary
and with minimal (3%) network overhead. Our case study on a
real-world APT attack scenario demonstrates that CUSTOS forces
anti-forensic attackers into a “lose-lose” situation, where they can
either be covert and not tamper with logs (which can be used
for forensics), or erase logs but then be detected by CUSTOS.

I. INTRODUCTION

Auditing is an essential component of building and main-
taining secure systems. When suspicious events occur, system
logs are frequently turned to as the definitive ground truth of
the system’s activities. Such logs have been leveraged to ad-
dress a variety of security challenges, from post-mortem attack
reconstruction [7], [65], [68], [76], [99] to runtime tasks such
as access control [4], [6], [88], [95], execution integrity [107],
[118], and intrusion detection [23], [43], [62], [64], [83]. The
integrity of logs is thus a vital consideration in system security.

Unfortunately, intruders also understand the value of sys-
tem logs. Because such logs describe an attacker’s method
of entry, mission objectives, and further propagation within
a system, attackers regularly engage in anti-forensic counter-
measures to erase or conceal this vital forensic evidence [121],
[90], [56], [9]. Penetration testing tools such as Last Door [37]
and Metasploit [104] go so far as to automate this process, al-
lowing an intruder to escalate privilege and wipe the associated
logs with a single command. Perhaps worse than log removal,
attackers may also edit existing events or insert new ones to
confuse investigators [38], [21]. Concerningly, recent reports
suggest that 72% of incident response specialists have encoun-
tered tampered logs in the course of an investigation [16], [17].

In light of this reality, it is perhaps surprising that commod-
ity operating systems offer no special protections for their log-
ging frameworks. Case in point, root access is often sufficient
for the covert manipulation of any and all forensic evidence.
While fully preventing this tampering might be impossible,
detecting it should be of prime importance. Existing commer-
cial solutions to this tamper-evident logging problem involve
specialized Write-Once-Read-Many (WORM) storage devices
[47], [85] or fully-trusted remote storage servers [58], [94].
Concurrent to commercial efforts, a variety of cryptographic
solutions have been presented in the literature, spanning sym-
metric cryptography [10], [108], [44], digital signatures [73],
[127], [41], and tamper-evident data structures [20], [101].

However, while these approaches show promise for con-
strained logging scenarios (e.g., securing a single application’s
log), they present limitations that make them ill-suited to the
demands of system logging. Existing commercial solutions,
while considered good practice in the industry [32], rely
on either costly and exotic hardware devices or continuous,
timely communication with remote trusted servers. Proposed
cryptographic techniques incur excessive computational and
storage overheads and do not account for practical issues
such as continuity across power cycles or compatibility with
upstream log analysis applications (e.g., [115]). Critically,
all prior solutions suffer from issues of throughput, meaning
that they are too slow to be used in practice on modern
operating systems, which can generate hundreds of thousands
of system calls per second [24]. For these reasons, we argue
that prior solutions do not meet the practical requirements of
operating systems. For tamper-evident logging to be viable
within operating systems, it must be scalable, efficient, and
minimally invasive to the existing audit frameworks.
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In this work, we revisit the goal of tamper-evident logging
within the context of standard operating system abstractions.
We introduce CUSTOS,1 a practical solution for the detection of
tampering in system logs. CUSTOS scales to high volume log-
ging scenarios, avoids invasive modifications to commodity au-
dit frameworks, and is provably secure under a strong attacker
model. CUSTOS is made up of the following components:

1) Tamper-Evident Logger: To enable the verification of
log integrity, we present a minimally invasive tamper-
evident logging layer for commodity audit frameworks.
Our protocol satisfies the above requirements by decoupling
cryptographic event commitment from logging—leveraging
features of off-the-shelf Trusted Execution Environments
(TEEs). Upon creation, log events are hashed inside the en-
clave, and the enclave asynchronously signs these hashes in
response to periodic audits. We show that, without trading
off security, this technique allows CUSTOS to secure up to
1,086,956 events per second, as compared to at most 1,266
events per second on the same hardware in prior work [57].
As such, CUSTOS’ tamper-evident logging protocol is three
orders of magnitude (i.e., 1000×) faster than prior TEE-
based work. Furthermore, our logger supports third-party
verifiability of log integrity, and, unlike prior work [57],
[89], does not break compatibility with log analysis appli-
cations by avoiding reliance on log encryption.

2) Real-time Decentralized Auditing: Differently from many
prior solutions (e.g., [73], [57], [41], [128], [44]), we also
focus on how to discover log tampering through auditing.
Intuitively, the more frequently logs are audited, the earlier
anti-forensic attackers will be detected after intrusion: thus,
there is a clear motivation for auditing to be a frequent
operation. To this end, we introduce a decentralized au-
diting scheme that enables near real-time detection of log
integrity violations. Our scheme employs a three-way net-
work protocol between CUSTOS-enabled hosts and detects
log tampering with very high probability even in the pres-
ence of distributed adversaries. Decentralized audits further
enable CUSTOS to provide assurance of log availability
for historic, integrity-verified log data. Most importantly,
decentralized audits force anti-forensic attackers into a
“lose-lose” situation, where they can either be covert and
not tamper with logs (which can be used for forensics), or
they can erase logs but then be detected by CUSTOS.

In summary, this paper makes the following contributions:

• We design CUSTOS, a comprehensive and practical solu-
tion for the detection of tampering in system logs, made
up of a tamper-evident logging layer and a decentralized
auditing protocol. CUSTOS minimizes the cost of securely
logging an event down to a single hash update by decou-
pling cryptographic event commitment from logging—
leveraging features of off-the-shelf TEEs. We include
security analyses of our protocols to demonstrate their
correctness in the presence of anti-forensic adversaries.

• To enable further experimentation and proliferation of
tamper-evident logging mechanisms, we implement a
prototype version of CUSTOS for the Linux Audit system

1Custos is the Latin word for guard. It was used by the Roman poet Juvenal
in the phrase “Quis custodiet ipsos custodes?” (Satire VI, lines 347–348),
translated as “Who watches the watchers?”.

that uses Intel SGX as a TEE. Our prototype is available
as open source at https://bitbucket.org/sts-lab/custos/.

• We rigorously evaluate the performance and effectiveness
of our system in a network of 100 hosts. Our results
demonstrate that CUSTOS can secure log events 1000×
faster than prior work and imposes only 2% to 7% runtime
and 3% network overheads over insecure logging. Our
case study shows that CUSTOS enables the detection of
log tampering in real-world APT attack scenarios.

II. BACKGROUND

1) System Logs: This paper concerns itself with detecting
tampering with system logs. System logs, sometimes referred
to as audit logs, are a set of records that provide documentary
evidence of the sequence of activities that have affected an
operating system (OS). These records contain information that
serves to establish what type of event occurred, when and
where it occurred, its source and outcome and the subjects
associated with it [85]. System logs differ from application
logs because they are not generated by the application code
at the developer’s will, but by the OS regardless of the
application’s code. As such, they are able to capture the
most primitive system-level events (i.e., system calls), which
include records of security-relevant events such as execution
of malicious binaries and failed login attempts. Moreover, the
volume of system logs is generally very large compared to
application logs, since modern OSs can generate hundreds of
thousands of system calls per second [24]. Because of their
forensic value, system logs are critical for postmortem analyses
after a break-in. As a consequence, recording system logs is a
legal requirement for a number of security-related certifications
(e.g., [105], [51]): in Linux, the Audit Subsystem (LAuS) [117]
was introduced in version 2.6 to achieve certification under the
Controlled Access Protection Profile (CAPP) common criteria
[86]. System auditing will continue to grow in importance with
the enactment of the European Union’s GDPR [25].

2) Intel SGX: Intel Software Guard Extensions (SGX) are
a set of extensions to the x86 instruction set architecture that
allows for the creation of isolated execution environments
called enclaves. Once an enclave has been initialized, the
processor ensures that any system component outside the
enclave, including the privileged software, cannot access the
enclave’s protected memory where its code and data reside.
Untrusted applications can, however, switch into enclave mode
at pre-defined entry points and execute protected instructions
inside the trusted enclave. For an untrusted application to start
executing trusted code inside the enclave, it needs to invoke an
EENTER instruction, which performs a sequence of steps (e.g.,
load secure register context) before transitioning to enclave
mode. Intel provides wrapper code, called ecalls, to prepare
the environment for an EENTER instruction [49]. Current SGX
hardware provides 128 MB of protected enclave memory per
host. However, SGX also offers a sealing feature, which allows
an enclave to persist and retrieve data on the host’s unprotected
memory, even after the enclave is destroyed and restarted.
Sealed data is confidentiality and integrity-protected, but seal-
ing does not provide freshness guarantees and is vulnerable
to rollback attacks. To address rollback attacks, SGX supports
monotonic counters that use non-volatile memory to maintain
state across different sessions. However, usage of monotonic
counters is limited by both their quota (256 per enclave) and
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their update rate (excessive use can cause memory to wear out).
Note that, while our implementation utilizes Intel SGX, our
design is applicable to any enclave-like interface [116], which
can alternatively be provided by other TEEs such as ARM
Trustzone and Keystone (see [14], [26], [19], [60]). However,
as we will demonstrate, our performance requirements rule out
off-chip solutions such as the Trusted Platform Module (TPM),
which is notoriously slow [80], [102].

III. THREAT MODEL AND GOALS

1) Threat Model: This work envisions a large organiza-
tional environment, comprised of upwards of thousands of ma-
chines, that is the target of a sophisticated and well-funded ad-
versary. The adversary’s attack pattern follows the APT lifecy-
cle model [83]: after an initial compromise grants unprivileged
access to a host, the attacker establishes persistence and then
escalates privilege in order to achieve full system compromise,
at which point they have full control of the operating system,
and can engage in anti-forensic measures (e.g., log tampering
[104], [37], [90], [121], [77]) in order to hide their presence.

We assume that each host in the network is equipped with a
TEE such as Intel SGX that can confidentially store crypto-
graphic keys. We also assume that the implementations of the
cryptographic functions used inside the TEE are side-channel
free, meaning that they do not exhibit secret-dependent mem-
ory accesses that can leak the signing key.2 We make the usual
assumption that it is not feasible for an adversary to forge digi-
tal signatures or find collisions in cryptographic hash functions.
Finally, we assume that the organization employs a system ad-
ministrator or cyber analyst that maintains a key management
service (KMS) and can receive and respond to security alerts.

2) Design Goals: With the adversary model and the as-
sumptions described above in mind, we set out to design a
system that satisfies the following properties:

G1 Tamper-Evident Logs. The auditing system must record
log entries with provable integrity such that forgeries,
omissions, and other forms of tampering can be detected.
That is, after achieving full system compromise, an ad-
versary should not be able to undetectably manipulate log
messages recorded pre-compromise. This goal is consistent
with prior work (cf. Section XIII).

G2 Third-Party Verifiability. Log verifiability should not de-
pend on a single machine or fully trusted verifier. In foren-
sic investigations, third parties (e.g. Court agents [52],
[53], [33]) should be able to verify the correctness and
authenticity of a given set of logs without being granted
other privileges in the system (e.g., access to secret keys).

G3 Fine-Grained Audits. The system must support veri-
fication of subsets of log entries without the need to
possess the entire log history. This permits audits over
a specific time span of interest. Further, this property aids
attack reconstruction by attributing integrity violations to
a specific time span in the log history.

G4 Log Availability. In addition to detecting violations of
log integrity, the system should provide assurance of

2CUSTOS’ security in the context of micro-architectural side channels
reduces to software in the TEE being able to protect secret keys during
cryptographic routines (e.g., when calculating digital signatures), which is a
well-studied and orthogonal problem [122], [103], [18], [12], [129], [125].
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Fig. 1: Overview of CUSTOS’ components. Each rectangle represents
a host. Hosts record logs using CUSTOS’ Logger (Section V). A shows
a centralized auditing scenario (Section VI), where one central server
(Auditor) audits the logs of other hosts and reports violations to the
system administrator. B shows a decentralized auditing scenario (Sec-
tion VII) where logging hosts also run CUSTOS’ Auditor component
and audit each other in a peer-to-peer fashion.

log availability. Specifically, the system should allow to
preserve and retrieve copies of historic, integrity-verified
log data describing pre-compromise events.

G5 Minimal Invasiveness. The system must interoperate with
commodity audit frameworks, avoid changes to the un-
derlying OS, work efficiently enough to be deployed on
systems under heavy load, and preserve compatibility with
upstream log analysis applications (e.g., [115]).

3) Design Challenges: Providing the above properties is
challenging given our threat model. Let us consider exist-
ing schemes that satisfy G2 (third-party verifiability). These
schemes fall short of achieving our other goals by trading off
performance (violating G5) or security (violating G1).

For example, existing forward-secure signature schemes
relying on the notion of epoch (e.g., [73], [44], [41]) fully
achieve G1 only when configured to generate signatures at the
granularity of one log event (epoch = 1), but generating a
new key and/or signature per log event incurs impractically
large computational costs (violating G5). On the other hand,
when epoch = n the most recent pre-compromise events
remain vulnerable. That is, if the attacker achieved full sys-
tem compromise before the n-th event of the current epoch
occurred, then they would obtain the current key and be
able to forge integrity proofs for all pre-compromise events
belonging to the current epoch. Such a configuration would
thus fail to provide G1. Moreover, schemes based on forward-
secure sequential aggregate signatures (e.g., [73], [128]) fail to
provide G3 (fine-grained audits) in that they require the entire
log history for verification.

While the aid of trusted hardware (as in [57], [89], [111])
can help overcome these issues (e.g., by protecting the secrecy
of the current key after full system compromise), it is not
a panacea. Interacting with a TEE still requires addressing
attack vectors such as rollback attacks and protocol termination
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TABLE I: Summary of notation and semantics for CUSTOS’ protocols.

Notation Description

H An incremental cryptographic hash-function with methods Init, Update, Final.
Init() initializes and returns a hash context.
Update(hash, data) updates the hash context hash with data.
Final(hash) generates the hash digest h(hash).

Σ A digital signature scheme with methods KeyGen, Sign, Verify.
KeyGen() generates an asymmetric key pair 〈sk, pk〉, with sk private key and pk public key.
Sign(sk,m) generates σsk(m) by signing message m with sk.
Verify(pk,m, σsk(m)) returns true if σsk(m) is a valid signature over m made with sk, false otherwise.

m1‖m2 Concatenation of m1 and m2.

〈sk, pk〉 Uniquely-identifying keypair for CUSTOS instance. Generated with Σ.

Me Ordered set of non-overlapping consecutive log entries belonging to a block with unique ID e.

Seal(in, out) TEE function. Seals the given input data in into the encrypted output data out .

Unseal(in, out) TEE function. Attempts to unseal the given encrypted input data in into the output data out. Returns −1 if the
unsealing fails (e.g. the sealed data was tampered with).

CreateMC() TEE function. Initializes a monotonic counter with ID mcID and value mc = 0. Returns the tuple 〈mcID,mc〉.
IncrementMC(mcID) TEE function. Increments by one the value of the monotonic counter with ID mcID.

ReadMC(mcID) TEE function. Reads and returns the value of the monotonic counter with ID mcID.

DestroyMC(mcID) TEE function. Destroys the monotonic counter with ID mcID.

attacks, and accounting for these issues often leads to large
overheads [46], [78], [80]. However, as hosts can generate
hundreds of thousands of system calls per second [24], sat-
isfying G5 necessitates low overheads. In addition to perfor-
mance challenges, TEEs also pose reliability challenges. For
example, hardware monotonic counters (updated once every
50 log events in [57]) are known to become unusable after
approximately one million uses due to the wear-out of non-
volatile memory [78]. Another limitation of TEEs is the limited
memory available to enclaves (e.g., 128 MB in SGX), making
them unusable to store large amounts of log messages.

IV. SYSTEM OVERVIEW

In light of the inability of prior work to meet our goals,
we now present the design of CUSTOS, an efficient and secure
solution for the tamper-evident logging problem. CUSTOS
enables the detection of tampering in system logs through
the introduction of the components described below. A visual
diagram of these components is provided in Figure 1.

1) Tamper-Evident Logger (Section V): As log events are
generated by the operating system, they are processed by
an underlying audit framework3 that is minimally-modified
to efficiently generate proofs of log integrity. Upon creation,
log events are hashed inside the enclave, and the enclave
asynchronously signs these hashes in response to periodic
audits. The code and data (keys) responsible for producing
these signatures are partitioned from the rest of the framework
and executed within a trusted enclave. For proof verification,
the Logger publishes its public key, which is bound to the
identity of the enclave.

3In this work, underlying audit framework refers to the software which
receives and records the log events generated by the OS.

2) Centralized Auditing (Section VI): Log tampering is
discovered through auditing. To this end, we introduce two
auditing protocols for CUSTOS. Our first auditing protocol is
designed to support the prevailing common practice for logging
in large organizations, which is is to transmit log events to a
central storage server. The central server (Auditor) obtains logs
and proofs from a Logger host by issuing an audit challenge
to it. The Logger sends a response to the audit challenge
that includes the logs and their associated integrity proofs.
The Auditor uses these proofs to check the integrity of the
logs included in the response, sending a security alert to the
administrator if the audit fails.

3) Decentralized Auditing (Section VII): A centralized log
server creates a single point of failure, which could con-
ceivably be targeted by attackers after perimeter defenses are
breached. Thus, centralized auditing jeopardizes G4 and also
creates scalability issues. To address these limitations, we
present a decentralized variant of our audit protocol. Here, all
network nodes include an Auditor component running inside
the enclave of the host. The Auditor randomly initiates audit
challenges with a parameterizable number of its peers over
a specified time period. Our protocols further support secure
log replication with parameterizable redundancy and include a
parallelized log reconstruction algorithm.

V. TAMPER-EVIDENT LOGGER

We now describe CUSTOS’ tamper-evident logging pro-
tocol in its five routines: (1) Initialization; (2) Startup; (3)
Logging; (4) Commitment; and (5) Shutdown. Each of these
routines corresponds to a call to the Logger application running
inside the trusted enclave. Table I explains the notation and
TEE functions we will use in our protocol descriptions.
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Algorithm 1: Initialization Phase
Output: sealed-key-id, sealed-e

〈sk, pk〉 ← Σ.KeyGen() ; // pk is published
〈mcID,mc〉 ← CreateMC();
e← 0;
Seal(〈sk,mcID〉, sealed-key-id);
Seal(〈e‖mc‖mcID〉, sealed-e);

Algorithm 2: Startup Phase
Input: sealed-key-id, sealed-e

ret1 ← Unseal(sealed-key-id, 〈sk,mcID〉);
if ret1 == −1 then

raise an error;
mc← ReadMC(mcID);
ret2 ← Unseal(sealed-e, 〈e‖mce‖mcIDe〉);
if ret2 == −1 ∨mce 6= mc ∨mcIDe 6= mcID then

raise an error;
IncrementMC(mcID);
hash← H.Init(); }

StartNewBlock()
e← e + 1;

1) Initialization phase: Algorithm 1 shows the initializa-
tion phase, used when CUSTOS is deployed on the host. This
phase starts with creating an asymmetric key pair 〈sk, pk〉 for
the Logger. Next, the TEE is used to initialize a new monotonic
counter with UUID and value 〈mcID,mc〉, respectively, and a
block ID variable (e) is initialized to zero, which will be the
index of the first block of logs signed with sk. The TEE is then
used to seal these values so that they can be stored on disk;
they will be unsealed by the Logger during its startup phase.
pk and sealed-key-id are also copied onto an administrative
machine for key management and recovery purposes.

2) Startup phase: Algorithm 2 describes the startup phase,
which is invoked once per application startup. This phase starts
with unsealing the previously sealed key, monotonic counter
ID, and block ID, and ensuring the freshness of the block
ID (by checking that the mc attached to sealed-e is up-to-
date).4 The Logger then increments the value of the monotonic
counter to mark the beginning of a new session. Finally, a
new block is started and an incremental hash is initialized.
The Logger maintains the key, monotonic counter, block ID,
and incremental hash in enclave-protected memory throughout
its execution until the shutdown phase is invoked. Once this
phase is complete, the Logger is ready to receive log events
from the underlying audit framework.

3) Logging phase: Algorithm 3 shows the logging phase,
which is invoked each time the audit framework produces
a new log event. As moderately loaded hosts can produce
hundreds of thousands of system calls per second [24], per-
formance is paramount in this routine. CUSTOS judiciously
minimizes the cost of this phase by having it use a single,
efficient operation: updating the current block’s hash value
with the new log event.

4In case of corrupted or stale data, the Logger will raise an error and will
need to be re-initialized. We discuss how CUSTOS supports recovery from
errors in Appendix A.

Algorithm 3: Logging Phase
Input: A log message m

H.Update(hash,m); // update the hash

Algorithm 4: Commitment Phase

Output: e, σsk(hashMe)

H.Update(hash, e);
hashMe ← H.Final(hash);

}
CompleteBlock()

σsk(hashMe) ← Σ.Sign(sk, hashMe)

StartNewBlock();

Algorithm 5: Shutdown Phase

Output: sealed-e, e, σsk(hashMe)

CompleteBlock();
Seal(〈e‖mc‖mcID〉, sealed-e);

4) Commitment phase: The commitment phase, shown in
Algorithm 4, is invoked when the Logger receives an audit
challenge for the current block: this process will become
clearer when we introduce our audit protocol in Section VI.
During this phase, the Logger signs the incremental hash that
has been generated over the current block of logs (with block
ID e). Finally, a new block is started. The output signature can
then be stored together with the logs and used for auditing
purposes. Observe that the size of each block thus depends on
the frequency of the audits.

5) Shutdown phase: Algorithm 5 describes the Shutdown
phase. This phase is invoked when the Logger application is
terminated. In this phase, the Logger must complete the current
block (regardless of whether an audit challenge was received)
and seal the current block ID e together with the current value
and ID of the monotonic counter. This phase ensures that (1)
all log entries up to the moment of shutdown are successfully
signed and (2) when the Logger is started up again it can
continue with block ID e + 1.

VI. CENTRALIZED AUDITING

In large organizations, it is common practice to periodically
transmit system logs to a central storage server. Once the logs
are extracted from the host, they can be analyzed by Secu-
rity Information and Event Management (SIEM) products or
retained for forensic analysis. In this section, we demonstrate
how CUSTOS can be suitably incorporated into this workflow
through the introduction of an audit protocol, which serves
to ensure that logs were not manipulated between capture and
transmission to the central server. An overview of this protocol
can be found in Figure 2. The procedure works as follows:

1) The central storage server (Auditor) initiates an audit by
sending a signed audit challenge to the Logger. An audit
challenge message includes a challenge ID cID, which
is a nonce, and an interval of log blocks defined by its
extremities b1 and b2 (with b1 ≤ b2). If b2 is unspecified,
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Auditor Logger

cID, b1, b2,
σska(cID‖b1‖b2)b1 = e− 2

b2 = Ø
msg = Mb1 , σskl(Mb1), . . . ,Mb2 , σskl(Mb2),

σskl(cID‖b1‖b2‖msg)

result(b1,b2),
σska(result(b1,b2))

Fig. 2: Protocol summary of an audit. The Auditor initiates an audit
challenge between blocks with IDs b1 and b2. The Logger transmits
the inclusive range of log events between the IDs with their associated
integrity proofs. The Auditor notifies the Logger of the result after
storing and verifying the logs. 〈ska, pka〉 denotes the key pair of the
Auditor, and 〈skl, pkl〉 denotes the key pair of the Logger.

the audit challenge represents a request for the Logger to
commit and transmit its current log block.5

2) The audit challenge is received by the untrusted com-
ponent of the Logger, which passes it to the enclave.
The enclave verifies the challenge’s authenticity (by
ensuring that its signature is valid) and freshness (by
ensuring that cID has not been used before). If b2
was unspecified in the challenge, the enclave commits
the current log block Me and sets b2 = e. Finally,
it receives from the untrusted component a copy of
the requested blocks Mb1 , . . . ,Mb2 and their associated
proofs σsk(Mb1), . . . , σsk(Mb2), and produces a signature
σsk(cID‖b1‖b2‖Mb1‖σsk(Mb1)‖ . . . ‖Mb2‖σsk(Mb2)). The
untrusted Logger then transmits the blocks, the proofs
and the generated signature as a response to the Auditor.

3) The Auditor validates the Logger’s response signature
and then iteratively verifies the integrity proof for each
log block. If successful, the Auditor stores the logs and
proofs. It also notifies the Logger of the successful result;
this message will become relevant when we introduce the
decentralized version of the protocol. If verification fails,
the Auditor will raise an alert to notify the administrator
of an incorrect Logger.

VII. DECENTRALIZED AUDITING

In spite of remaining the predominant common practice for
logging in large organizations, a centralized auditing strategy
might be problematic when considering our powerful attacker
model. In fact, while centralized auditing retains a copy of the
integrity-protected logs off of the (potentially compromised)
host, its log server represents a single point of failure. As
a result, a viable attack strategy against centralized CUSTOS
would be for the adversary to participate in the auditing
protocol in an honest manner, and then attempt to compromise
the log server. Once the log server is compromised, the
adversary could engage in the same anti-forensic activities that
they would have otherwise conducted on the host, but without
raising alerts that would cause their immediate detection.

5The ability for the Auditor to request previously committed, already
verified log blocks will become relevant for reconstruction purposes.

TABLE II: Parameters for decentralized audits, controlled by admin-
istrative policy and can be different for each participating node.

Notation Description

T Period between audits. That is, a node initializes a
round of audit challenges every T .

w Number of audit challenges that a node sends during
each audit round.

µ Timeout to receive a response in the protocol; µ must
be less than T .

r Number of nodes where each block of log entries
needs to be replicated.

TEE TEE

2 Generate 
Challenges

1 Every T

4
Receive 

Challenge 5
Verify 

Challenge

6 Sign Me7
Retrieve logs

to be sent

9
Send 

Response 8 Authenticate
Response10 Receive 

Response11
Verify 

Response

12
Verify log 
integrity 13 Store logs

15
Send
Result14 Prepare

Result

16
Receive
Result 17 Verify

Result

18
Update 

Replication
Metadata

3 Send 
Challenges

Auditor Logger

Fig. 3: System-layer diagram of an audit. The three protocol messages
in Figure 2 correspond in this diagram to events 3, 9, and 15,
respectively. The functionalities running inside the TEE are limited
to generating protocol messages, verifying message authenticity and
updating the enclave state in response to successful audits.

In this section, we address this limitation through an
alternative, decentralized auditing strategy comprised of 3
principal components: (1) we now place a trusted Auditor
component running inside the enclave of each host within
CUSTOS’ deployment network; (2) this Auditor is responsible
for administering Decentralized Audit Challenges in concert
with the other nodes in the network; (3) as this protocol
results in the distributed replication of log blocks throughout
the network, a Distributed Log Reconstruction mechanism is
provided that allows administrators to efficiently retrieve a
forensic record of events from a particular host over a given
time span. We describe each of these components below.

1) Trusted Auditor: When first initialized, the trusted Au-
ditor is provided a set of parameters (summarized in Table II)
that govern its behavior. They include the period between audit
challenges T , the number of nodes to challenge in each round
w, and a timeout value µ that the Auditor should wait on
a challenge response before declaring failure. These values
can be fixed across all nodes or vary from node-to-node.
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TABLE III: An example Global State Report (G) with r = 3,
compiled by the administrator to track the audit results of each node,
at the granularity of single log blocks. 3 indicates a successful audit,
while 7 indicates an unsuccessful one.

Node Block ID Auditors

... ... ...
1 71 {4 3, 6 3, 7 3}
1 72 {3 7, 6 7, 7 7}
2 80 {7 3, 8 3, 9 3}
3 42 {1 3, 2 3, 5 3}
... ... ...

Additionally, we introduce a new parameter r for the Logger
component, which specifies the number of nodes on which
each of its log blocks should be replicated. The Logger and
Auditor components run in the same enclave and process space
and share the same identity key pair.

2) Decentralized Audit Challenges: The decentralized au-
diting variant builds on the same audit protocol used in the
centralized version; Figure 3 shows a system-layer diagram of
how the audit challenge flows through the trusted and untrusted
components of two nodes, one in the Auditor role and one in
the Logger role. Below, we explain how decentralized auditing
wraps the audit protocol described in Section VI.

1) Every T , the Auditor selects w nodes uniformly at random
from the network. It then issues to each node an audit
challenge over (b1 = ∗, b2 = ∗), which are wildcards
to be resolved by the receiving Logger according to its
replication needs. ( 1 - 3 ).

2) Each Logger responds to the audit challenge in the same
manner described above. The Logger always commits and
returns the most recent log block (i.e., b2 = e), and it will
adjust b1 to include additional historic blocks that have
not yet been replicated r times if they have not been sent
to that Auditor before ( 4 - 9 ).

3) Upon receiving a response, the Auditor checks that the
response is valid and then verifies the integrity proofs
of the log blocks included in it ( 10 - 13 ). If the response
is invalid or the Logger does not respond within µ, the
Auditor alerts the administrator of a failed challenge. If
the response is valid but the verification of log integrity
fails, the Auditor alerts the administrator that the logs of
the challenged node have been tampered with.

4) If both response and log integrity were valid, the Auditor
sends a result as a confirmation to the Logger that the log
was verified and replicated ( 14 - 15 ). If such confirmation
is valid, the Logger updates its replication count for
the audited blocks ( 16 - 18 ). If no valid confirmation is
received within µ, the Logger discards the challenge. The
result of each audit is also mirrored to an administrative
machine for accounting purposes.

3) Distributed Log Reconstruction: Decentralized auditing
prevents the log storage server from becoming a single point
of failure; in the steady state of the protocol, each node’s
logs will be stored with r redundancy at different remote
nodes in the network. However, decentralized storage also
complicates the matter of inspecting the logs during post-
mortem investigations. To address that, we present the follow-

Algorithm 6: Pseudocode of function for decen-
tralized log reconstruction. Min returns the minimum
value in a set, Request retrieves node v’s log block
Mi from node n, Sum sums the values in a set, and
ResponseCallback executes when node n’s response
to Request arrives.

Function Retrieve(node v, bl id s, bl id e, report G)
Logs← []
ReqCnt← [∀n ∈ N, 0]
for i = s to e do

Locations← G[v][i]
n← l ∈ Locations, s.t. ∀k ∈ Locations

ReqCnt[k] ≥ ReqCnt[l];
Request(n, v, i,ResponseCallback)
ReqCnt[n]← ReqCnt[n] + 1

while Sum(ReqCnt) > 0 do
wait

return Logs

Function ResponseCallback(node n, bl id i, block M)
Logs[i]← M
ReqCnt[n]← ReqCnt[n]− 1

ing algorithm that enables the parallelized reconstruction of a
target node’s log history at a single point in the network. To
begin, the administrator compiles the result messages of each
audit challenge into a Global State Report (G), an example
of which is shown in Table III. G tracks the integrity state
of each node’s logs over time, but also indexes where each
log block has been replicated. To reconstruct a target node
v’s logs over a block range s to e, the administrator invokes
the Retrieve function, shown in Algorithm 6. This function
parallelizes retrieval of logs across the available nodes in G.
To maximize throughput, the function tracks which nodes
are currently fielding requests on other blocks and minimizes
the number of outstanding requests to the same node. While
omitted for brevity, Retrieve also supports recovery from
request timeouts and invalid responses, and ResponseCallback
verifies v’s signature over block Mi as in the original audit.

VIII. IMPLEMENTATION

We implemented CUSTOS in C for Linux Audit 2.8.2. In
particular, we extended the auditd user space daemon [70]
to be integrated with an Intel SGX enclave that supports all
of CUSTOS’ trusted logging and auditing functionalities. Our
implementation consists of 2,254 lines of C code (excluding
Makefiles, libraries, comments and blank lines), of which 658
run inside the SGX enclave. The TEE functions required by our
design are provided by Intel SGX and the monotonic counter
used by the Logger is an SGX-managed hardware counter.6
We use Intel SGX’s trusted cryptography library to compute
hashes (with SHA-256) and digital signatures (with ECDSA),
and the TPL library [39] to serialize messages before network
transfer, which we implement using TCP sockets. Importantly,
however, even though we only implemented it on top of Linux
Audit, CUSTOS is designed to be neutral to the underlying
operating system and audit framework.

6CUSTOS’ use of the monotonic counter feature is limited to one write per
server startup, which is safe with regard to the risks of memory wear-out [78].
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IX. SECURITY ANALYSIS

We now explain how CUSTOS assures the intended security
and design goals. The correctness of G1 (tamper-evident logs)
can be evaluated by enumerating the space of attacks against
the Logger. For simplicity, we assume here that a centralized
audit has been issued from block zero to the present.7

• Historic Event Deletion. An attacker cannot delete arbi-
trary events from a node’s historic log records. Removing
a subset of events from a block will invalidate its integrity
proof, which cannot be forged. Attempting to remove an
entire block will invalidate the response, which cannot
be forged. A Truncation Attack on the log will similarly
be detected by validating the response. This is because all
protocol messages are processed inside an enclave, which
protects cryptographic keys from the untrusted OS.

• Historic Event Tampering. An attacker cannot insert or
modify events into a committed log block without invali-
dating its integrity proof. An attacker also cannot re-order
blocks because the trusted component of the Logger signs
over the chronologically-ordered challenge response.

• Protocol Termination. An attacker with root privilege is
able to terminate the Logger process at any time. An
attacker may use this ability to try to prevent a block’s
commitment, but will then need to restart the Logger so
it can respond to future challenges. Because the current
block is committed during the Shutdown Phase, which
is always invoked during regular process killings (in our
implementation, from auditd’s SIGTERM handler), the
attacker will have to force kill the process. However, by
skipping the Shutdown Phase there will not be an up-to-
date sealed-e on disk that will unlock to the enclave’s
current configuration (recall that mcID is a hardware
counter that is incremented in the Startup Phase). Because
the attacker cannot forge sealed-e, the Logger will raise an
error, which will be detected during the audit. By the same
logic, the attacker is unable to launch Rollback Attacks
while the Logger is shutdown because this will cause
parameter unsealing to fail during the Startup Phase.

CUSTOS satisfies G2 (third-party verifiability) by having
each node publish its public key after initialization. This key
can be used to verify any log blocks produced by the node in
an online challenge or an offline (e.g., Court-related [52], [53],
[33]) audit. Recall that it is necessary for the organization to
deploy a key management service for nodes’ public keys.

Our system facilitates G3 (fine-grained audits) by permit-
ting audit challenges over ranges of log blocks. The number of
log events in a block varies with the workload of the system;
however, the administrator can exert control over the size of
blocks by tuning the parameters T and w. This is because a
block is guaranteed to be committed each time an honest node
receives an audit challenge. Because audits are fine-grained (to
the granularity of a single log block), our protocols can also
be used to issue proof-of-retrievability challenges on subsets
of historic log blocks that have previously been verified.

CUSTOS pursues goal G4 (log availability) by storing
integrity-verified logs at multiple remote locations during the

7Analyzing the security of G1 on either auditing protocol is analogous
because centralized audits are a special case of decentralized ones.

decentralized auditing: once a log block has been audited, the
attacker will not be able to erase it unless they compromise all
the r nodes in which it is stored. The higher r is, the more the
complexity and cost of such an attack increase as compared
to the centralized scenario. Further, these logs can be retrieved
using CUSTOS’ log reconstruction protocol. The security of G4
can be analyzed by enumerating the space of attacks against
the decentralized auditing protocol. Let v be a compromised
node that seeks to conceal events contained in block Me. We
have previously established that v will be detected if they fail
to reply to an audit challenge for Me within µ seconds, and v
cannot forge a valid response over tampered logs.

• Malicious Auditor Role. Until v is detected, they may
attempt to lie about an honest node’s correctness to inject
confusion into audit results. This would require v to
be able to generate a result message that implicates
the honest node, but this is not possible because the
Auditor component will only generate a result message
when presented with a valid authenticated audit response.
Because v cannot forge the result message, it is not in
their interest to lie about the honest node.

• Colluding Auditors. Multiple compromised nodes may
attempt to collude in the decentralized audit to conceal
their presence. A second dishonest node k cannot force an
audit challenge to v, but may randomly select v. Because
the untrusted environment controls network transmission,
k could then drop the result message that implicates
v. However, this would only delay the detection of v,
whose Logger would attempt to transmit Me again in
future challenges since k did not confirm its replication.
More shrewdly, v and k could both comply with the audit,
then immediately delete both copies of Me. Because v’s
trusted Logger component received a valid result from k,
it may conclude that Me was replicated r times and stop
transmitting it in future challenges. G4 thus depends on
the probability that v receives consecutive challenges by
r malicious nodes and no honest nodes. We demonstrate
that this probability is negligible in Section IX-A.

Finally, CUSTOS satisfies G5 (minimal invasiveness) in that
it is fully interoperable with any upstream applications that
process Linux Audit events. CUSTOS runs in the process space
of auditd, but its semantics are independent of the existing
audit-userspace code base. In fact, CUSTOS requires
inserting just 26 lines of code into existing source files. This
makes porting CUSTOS to new versions extremely simple.
In addition, while we described CUSTOS in the scenario of
online auditing frameworks, CUSTOS’ Logger could easily be
extended to automatically generate integrity proofs offline at
predefined time intervals or block sizes, without interaction
with any external party.

A. Probabilistic Analysis

Let v be a compromised node that seeks to conceal events
contained in block Me. We analyze the probability that v
succeeds in its mission without being reported, in the presence
of a distributed adversary. Let N + 1 be the number of nodes
participating in the protocol and f + 1 be the number of
compromised colluding nodes, including v. v’s enclave will
attempt to replicate Me to r auditors, in the order of challenge
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TABLE IV: Probability ε that a compromised node v is not audited
by any honest node under varying configurations of N , r and f .
N + 1 is the total number of nodes participating in the protocol, and
f + 1 ≤ N is the number of compromised nodes (including v).

N r =
⌊

N
25

⌋
r =

⌊
N
10

⌋
f =

⌊
N
4

⌋
f =

⌊
N
2

⌋
f =

⌊
N
4

⌋
f =

⌊
N
2

⌋
50 5.38× 10−2 2.449× 10−1 3.74× 10−4 2.51× 10−2

100 3.23× 10−3 5.87× 10−2 1.89× 10−7 5.93× 10−4

200 9.74× 10−6 3.38× 10−3 2.92× 10−14 3.32× 10−7

arrival. v can also re-order challenges before passing them to
the enclave so long as they responded to within µ seconds.

1) Case A: Suppose v receives r consecutive audit chal-
lenges from colluding compromised auditors and no challenges
from honest auditors. This is the best-case scenario for the
adversary as v does not even need to re-order challenges. The
first challenge arrives from a colluding node with probability
f
N . Given that, the second challenge arrives from a different
colluding node with probability f−1

N−1 . It follows that the
probability of attack success (ε) is:(

f

N

)(
f − 1

N − 1

)
· · ·
(
f − r + 1

N − r + 1

)
=
f !(N − r)!
(f − r)!N !

=
fPr
NPr

Table IV computes the value of this probability for different
configurations. In a network of N = 100 nodes, even with
f = 50 compromised colluding nodes, it suffices to choose
r = 4 to have the probability of attack success ε < 5.88%.

2) Case B: Let us now consider the case when v re-orders
challenges to keep the enclave from processing an honest
node’s challenge. Assume that v has received β < r distinct
challenges from colluding nodes and it is waiting for other
r−β challenges to arrive from other distinct colluding nodes.
The probability of this happening is fPβ/NPβ , using the same
method as in Case A. The (β + 1)-th challenge will arrive
from an honest auditor with probability N−f

N−β , making the
probability of v possessing β dishonest challenges followed
by one honest challenge:

P1 =
fPβ
NPβ

· N − f
N − β

If v chooses to delay the honest challenge while waiting for
r−β dishonest challenges, the dishonest challenges must arrive
within µ before v is detected by the honest node.

We can assume that the number of challenge arrivals per
unit of time follows a Poisson distribution [13]; this is because
at every T the auditors send challenges to nodes randomly and
thus challenges are sent to v independently of one another.
Let λ be the average rate of challenge arrival and X be the
random variable representing the number of challenges arriving
at v over a given interval. If we observe the system from the
perspective of v for a long time T , the total number of audit
challenges generated will be TT ·N ·w. There is a probability
1
N that v gets selected for each of those challenges. Therefore,
the average number of challenges that arrive at v within T

is TT · N · w ·
1
N . It follows that the average rate at which v

receives a challenge is λ = T
T ·N · w ·

1
N ·

1
T , that is λ = w

T .
Since X is Poisson distributed, it follows that the probability
that v receives m challenges within µ is:

P2 = e−µλ · (µλ)m

m!

Now we calculate the probability P3 that, among m chal-
lenges received by v, at least (r − β) of them are from new
colluding nodes. For exactly y auditors to be colluding among
these m, distinct y nodes are chosen from remaining f − β
colluding nodes, and m− y nodes are chosen from remaining
N − f − 1 honest nodes. Let random variable Y denote
the number of colluding auditors among m. The probability
P (Y = y) will be calculated as:

P (Y = y) =

(
f−β
y

)(
N−f−1
m−y

)(
N−1−β

m

) , y = 0, . . . ,m

Consequently, the probability that less than r − β colluding
nodes send challenges is:

P3 =

r−β−1∑
y=0

P (Y = y)

Therefore, the probability that at least r−β of the m challenges
are from remaining colluding nodes is 1−P3. The probability
that v receives m challenges within µ after an honest node b’s
challenge arrival and that at least (r − β) among the m chal-
lenges are from distinct colluding nodes is P2 · (1−P3). Since
X follows a Poisson distribution, the cumulative probability
P for any m in this scenario will be:

P = P1 ·
∞∑
m=1

P2(1− P3)

The distributed adversary will be in the least advantageous
position if the first of the r challenges to replicate Me is from
an honest auditor b, meaning that β = 0 and that to avoid
detection v would have to receive r colluding challenges within
µ. The best-case scenario for the adversary (other than Case
A) is when the first challenge from an honest auditor b arrives
after β = r − 1 challenges from colluding auditors. In this
case, v only needs one more challenge from a colluding node
within µ to succeed in its mission. However, even in this best-
case scenario and with N = 100, f = 50, r = 4, w = 10,
µ = 15 s, and T = 60 s, v will be able to avoid detection with
a probability of just 4.43%.

X. PERFORMANCE EVALUATION

We now characterize the performance of CUSTOS. To
do so, we leverage two experimental setups. In both, we
configured Linux Audit to log all forensically-relevant system
calls, using the same ruleset employed in [66], [31], [75].8

8This set includes the syscalls: read, readv, write, writev, sendto, recvfrom,
sendmsg, recvmsg, mmap, mprotect, link, symlink, clone, fork, vfork, execve,
open, close, creat, openat, mknodat, mknod, dup, dup2, dup3, bind, accept,
accept4, connect, rename, setuid, setreuid, setresuid, chmod, fchmod, pipe,
pipe2, truncate, ftruncate, sendfile, unlink, unlinkat, socketpair, splice.
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• Point-to-point Setup (Bare Metal): We deployed a
Logger on a server with an Intel Core i7-7700K CPU
at 4.20 GHz (4 physical cores) and 64 GB RAM running
Ubuntu Server 18.04 64 bit (Linux 4.15). We deployed
an Auditor on a different server with an Intel Xeon E5-
2630 v4 CPU at 2.20 GHz (10 physical cores) and 64 GB
RAM running Ubuntu Server 16.04 64 bit (Linux 4.4).
The Logger used SGX SDK version 2.3.1 with debug
mode on, while the Auditor used the same version in
simulation mode. During experimentation, we observed
an average latency of 176 µs between the two machines.

• Distributed Setup (VMs): We deployed CUSTOS on a
cluster of 100 Amazon EC2 m4.xlarge instances, each
with 4 VCPUs (2.3 GHz Intel Xeon E5-2686 v4 or 2.4
GHz Intel Xeon E5-2676 v3) and 16 GB of RAM. Each
instance was running Ubuntu Server 18.04 64 bit (Linux
4.15) and used SGX SDK version 2.3.1 in simulation
mode 9. A small script synthesized a constant workload
that generated an average of 32 log events (11.8 KB of log
data) per second on each node, which is a realistic (not
worst-case) rate for a server [76]. During experimentation,
we observed an average latency of 169 µs between any
two machines in the cluster.

A. Logger Microbenchmarks

We start by using the bare metal setup to measure the
time that CUSTOS’ Logger takes to perform each of the five
phases described in Section V. We run this microbenchmark
by manually invoking each Logger’s operation 500 times,
including in the measurement the time required to context
switch into and out of the enclave. Table V shows the results.
The phases that involve interaction with a hardware counter,
Initialization and Startup, are the most costly. This is because
Intel SGX’s monotonic counter operations are notoriously
slow [78], but these operations occur only once per session.
The next most costly phases, Commitment and Shutdown,
involve cryptographic signatures. However, these operations
are a function of challenge frequency, not the workload, and
in practice will occur orders of magnitude less frequently than
the Logging operation. Fortunately, Logging (ecalls) is the
most efficient phase at 4.71 µs per event processed, but the
performance of this operation is paramount, since it is invoked
once per log event. We observed that the main cost of this
phase is switching context between the untrusted OS and the
trusted enclave [46]: thus, to further improve its performance,
we created a second Logging implementation using Hotcalls,
which were recently introduced by Weisse et al. [126]. Hotcalls
provide the same security guarantees of ecalls, but allow us to
reduce the cost of context-switching to the enclave, enabling
a significant speed-up (0.92 µs) at the expense of running
an additional background thread permanently spinning inside
CUSTOS’ enclave. For the rest of our evaluation, we will
use the Hotcalls-based implementation of CUSTOS. In Section
X-B, we will evaluate the system-wide impact of this choice.

1) Prior Work Comparison: We have argued that prior
solutions for tamper-evident logging do not meet the needs
of commodity operating systems. To validate this assertion,
we perform a direct comparison of CUSTOS to prior work:
SGX-Log [57], [123]; a logger based on the TPM2 hardware’s

9EC2 instances with hardware SGX capability are not currently offered.

TABLE V: Microbenchmarks on Logger operations. We report the
median execution times over 500 runs, including results for the
Logging phase using both ecalls and Hotcalls. We compare to SGX-
Log [57] and a TPM2 [34] logger (same log messages), as well as
BGLS signatures [40] (smaller fixed-size messages), parameterizing
to optimize the performance of each. CUSTOS’ logging phase is the
only one that can scale to more than a million events per second.

Phase CUSTOS SGX-Log TPM2 BGLS

Initialization 94.55 ms – – –
Startup 109.10 ms – – –
Logging 4.71 µs 0.80 ms 20 ms 31.89 ms
Logging (Hotcalls) 0.92 µs 0.79 ms – –
Commitment 128.87 µs – 734 ms –
Shutdown 188.98 µs – – –

extend (Logging Phase) and quote (Commit Phase) oper-
ations [34]; and Hartung et al.’s scheme based on BGLS sig-
natures [41]. For SGX-Log and BGLS, we conservatively set
highly-favorable parameters for performance.10 We focus here
on the critical Logging phase, which dominates performance
cost. SGX-Log takes a median time of 0.80 ms (ecalls) and
0.79 ms (Hotcalls), TPM extend operations take 20 ms, and
the BGLS-based scheme takes 31.89 ms. Further, the TPM
implementation also requires a quote operation to produce a
proof, adding an additional median cost of 734 ms per block.

From these results, it can be seen that CUSTOS outperforms
existing solutions by three to five orders of magnitude. Another
way to compare the performances of these logging systems is
to consider the maximum throughput they can scale to support.
Using the numbers from Table V, we compute that CUSTOS
could process up to 1,086,956 log events per second. On the
other hand, SGX-Log could process at most 1,266 events per
second, the TPM2-based solution could reach at most 50 events
per second, and the BGLS approach could only sign at most 31
events per second. While the actual log throughput ultimately
also depends on how many events the underlying logging
framework can process and send to through the secure logging
phase, if we consider that single hosts can produce hundreds
of thousands of system calls per second [24], then CUSTOS is
the only solution that can scale to match such throughput.

2) Vanilla Linux Audit Comparison: Finally, we instrument
auditd to measure the average time that insecure Vanilla
Linux Audit takes to process a single event as compared to
CUSTOS. We run this microbenchmark by measuring the time
auditd takes to process 40,000 identical log events. We
find that CUSTOS-enabled auditd takes an average of 6.61
µs/event whereas Vanilla auditd takes an average of 5.67
µs/event. CUSTOS thus imposes an average 16.6% overhead
on unmodified, insecure auditd. This reported overhead is
conservative in that our measurement did not capture the time
required for auditd to flush events to disk, making the
overhead imposed by CUSTOS lower in practice. We conclude
that CUSTOS’ tamper-evident logging protocol imposes a rea-
sonable overhead over insecure Linux Audit’s log processing
time. We will analyze the impact of this overhead on real
applications in Section X-B.

10We configured SGX-Log to use a block-size of 1000 log messages to
avoid including in our measurement the impact of SGX-Log’s sealing phase,
and we configured the BGLS-based scheme with n = 1000 and l = 1000.

10



TABLE VI: Application benchmark results. We report the medians
over 10 runs. For httpd and NGINX, we used apache bench [119]
configured to send 100,000 requests from a single thread and output
the average time per request. For Redis, we used the built-in redis-
benchmark configured to send 250,000 requests from a single thread
and output the average time per request. We ran the Blast benchmark
in two configurations: first, limiting it to one thread only; second,
letting it use all the CPU threads available.

Test Type Vanilla CUSTOS Overhead

nginx 72 µs 73 µs 1.39%
apache2 75 µs 76 µs 1.33%
redis 23,520 ns 23,932 ns 1.75%
blast 938.641 s 954.104 s 1.65%
blast-multicore 222.791 s 237.027 s 6.39%

B. Logger Macrobenchmarks

To evaluate the system-wide runtime overhead of CUSTOS,
we use the point-to-point setup to measure the performance of
a series of application benchmarks while running CUSTOS in
the background. In particular, we benchmark three server ap-
plications (httpd [120], NGINX [87] and Redis [106]) and one
scientific-computing application (Blast [27]). Our choice of
server-oriented applications is dictated by the intended deploy-
ment environment (enterprise servers); further, the benchmarks
we choose are known to generate larger-than-average system
call loads [76]. Note that given our intensive configuration of
Linux Audit, we were unable to run classic OS benchmark
suites including UnixBench [72] and LMBench [82].11

We run each application benchmark 10 times and report the
results in Table VI. The runtime overheads of our CUSTOS’
implementation in the first four benchmarks are all under
2%. This is because CUSTOS does not add cycles to the
execution of system processes besides auditd, which runs
asynchronously from the processes that the audit stream de-
scribes. However, CUSTOS still incurs overhead due to its use
of Hotcalls and its interaction with the Architectural Enclave
Service Manager service (aesmd). This cost is most visible
in the blast-multicore benchmark, which is CPU-bound and
configured to use all the 8 logical cores of our experimental
machine. However, even in this scenario, CUSTOS’ runtime
overhead against insecure Vanilla auditd remains at a rea-
sonable 6.39%. We conclude that CUSTOS’ extensions to
Linux Audit impose acceptable system performance costs.12

C. Audit Protocol

We next use the point-to-point setup to characterize the
performance of CUSTOS’ audit protocol, used in both the cen-
tralized and the decentralized auditing scenarios. Intuitively,
we expect the cost of an audit to be dominated by the time
required to transmit and process log data, which are orders
of magnitude larger than CUSTOS’ protocol messages. To
confirm that, we measure the end-to-end time required by
audits from the perspective of the Auditor, which spans the

11This limitation, shared with prior work [67], [76], is due to Linux Audit
not scaling to support the intensive loads of these suites.

12When deployed in CPUs with a low number of cores, the cost of using
Hotcalls may outweigh its gains. In these cases, CUSTOS can be configured
to use standard ecalls at the cost of a slightly decreased throughput (Table V).
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Fig. 4: Time required by an auditor to complete an audit by number
of logs in the response. The measurements include all operations from
the moment of challenge generation to the moment of result transmis-
sion. The cost of an audit grows linearly with the size of the response.

moment of challenge generation to the moment of result
transmission (Figure 3, 2 - 15 ), while varying the number of
logs transmitted. We set the period between audits (T ) to 1
second, then throttle our workload script to generate variable
levels of logs per second. We consider 33 different workload
levels ranging from 1 to 9900 logs/second, repeating each
workload level 100 times. The results can be found in Figure
4. As expected, the time to complete an audit grows linearly
with the size of the log.

Another way to evaluate the practicality of our audit
protocol is to ask the question “For a given T , at what log
size would it take more than T seconds to complete an audit
challenge?” This log size represents the breakdown point of
the system, where audit challenges are now issued with greater
frequency than they can be responded to. Extrapolating from
the above test with T set to 1 s, we find that the Logger would
need to generate 145,000 events per second for the processing
time of an audit to exceed 1 s. We therefore conclude that, like
the CUSTOS logging mechanism, our audit protocol is practical
even for hosts under extreme load.

D. Audit Frequency

We now use our distributed setup to evaluate our decen-
tralized auditing protocol. As the cost of an individual audit is
identical in both the centralized and decentralized variants, we
here turn our attention to the frequency at which each node
is audited in a realistic CUSTOS’ deployment. To this end,
we run CUSTOS on a cluster of N=100 nodes, each with an
auditing interval of T=10 s, replication factor r=1 and a fixed
number of challenges per round w.13 We instrument nodes to
initiate their first audits at uniform offsets of T to smooth
the network impact. We then capture the times at which each
node gets audited over a period of 10 minutes of observation,
repeating the experiment with w=[1, 2, 4]. For each challenge
received by each node, we compute the time passed since the
same node received the last challenge.

13While r=1 is not the most secure configuration for G4, the goal of
this experiment is to capture audit frequency, which does not depend on r.
Similarly, our choice of a constant (not worst case) logging rate and the use
of SGX in simulation mode only minimally affect audit frequency.
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Fig. 5: Cumulative distribution function of the frequency at which
nodes are audited with varying number of challenges issued per audit
round (w). Results are based on a 100-node network over 10 minutes
of observation, with nodes initiating audit rounds every T=10 s. When
w=4, 98.4% of the time nodes were challenged again within T of
receiving the last challenge.

TABLE VII: Size of protocol messages in our CUSTOS’ implemen-
tation. The reported sizes include the size of one or more ECDSA
signatures (64 bytes) per message.

Message Type Size [Bytes]

Challenge 106
Result 98
Response metadata 210
Log Block 76 + 4 · number of logs + size of (logs)

Figure 5 shows the results as a cumulative distribution
function. Intuitively, when w increases, the frequency at which
nodes in the network are audited also increases. With w=4,
98.4% of the challenges were received within 10 s (1T ) of
receiving the last challenge, and in the worst case it took only
27.96 s (< 3T ) for a node to be audited. Another way to
interpret these numbers is that in 98.4% of the cases it took
less than T to audit and replicate a node’s logs, and in 100%
of the cases less it took less than 3T .

E. Network Cost

Next, we evaluate the network impact of auditing at higher
frequencies. In the above experiment, each node produced
approximately 19,200 events (7 MB) of log data, for a total of
1,920,000 events (700 MB) of log data across the 100 nodes.
Let 700 MB be our baseline for comparison, as this would
be the network cost for streaming logs to a centralized server
without CUSTOS. With CUSTOS and w set to 1, each node
completed a total of 60 audit challenges for a total of 6,000
challenges completed system-wide. Factoring in the size of
CUSTOS’ protocol messages, given in Table VII, CUSTOS’
total network cost for these 6,000 challenges was 711 MB
(1.5% overhead). However, in the experiments with w set to 2
and 4, CUSTOS’ network cost was just 714 MB (2% overhead)
and 719 MB (2.7% overhead), respectively. The reason for this
extremely gradual increase in cost is that the same number of
log messages are transmitted in each scenario. Increasing the
frequency of challenges only incurs the additional overhead of

CUSTOS’ small protocol messages, which are dominated by
the baseline cost of log transmission.

Based on this result, it is clear that challenge frequency
imposes no meaningful difference in network cost. More
challenges simply decrease the size of the average log block
and probabilistically reduce the time before each block is
replicated (cf. Section IX-A). Because of this, it is to the
advantage of the administrator to use many audit challenges
(T and w) when deploying CUSTOS; doing so will verify and
replicate logs sooner with minimal increase in network cost.
Conversely, modifying the replication factor r would increase
the network cost due to the larger amount of log data to
transmit. This increase in network (and storage) requirements
reflects the cost that must be paid for a stronger assurance of
log availability against a distributed adversary.

F. Enclave Memory Usage

For CUSTOS to be minimally invasive, it is not enough
to achieve low performance and network overheads. As we
mentioned in Section III-3, an important constraint of Intel
SGX is its limited amount of protected memory (128 MB on
current hardware), which is shared across all enclaves on the
system. To evaluate the memory usage of CUSTOS’ enclave
in our implementation, we use the official Enclave Memory
Measurement tool (sgx_emmt) from the Intel SGX SDK,
which returns the stack peak usage and heap peak usage in KB
during enclave’s execution. We launch it on our SGX-enabled
machine used in the point-to-point setup, while running both
Logger and Auditor on it. The reported peak memory usage
of CUSTOS is 5 KB of stack and 16 KB of heap, for a total
of 21 KB of memory, which is less than 0.02% of SGX’s
protected memory. This usage does not increase with the rate
of log events, since only one event at a time is processed
inside CUSTOS’ enclave during its operations. We conclude
that CUSTOS’ utilizes enclave memory efficiently.

XI. ATTACK CASE STUDY

In this section, we empirically demonstrate the effective-
ness of CUSTOS at detecting log tampering by presenting a
case study based on a realistic attack scenario. In particular, we
simulate the nation-state APT attack scenario “Firefox Back-
door w/ Drakon In-Memory” from the DARPA Transparent
Computing program dataset [59]. This attack starts with a
remote exploit of Firefox 54.0.1, which allows the attacker
to open a command shell that gives them unprivileged access
to the host; this shell is later used to download a malicious
binary file (“Drakon”) onto the victim host, which is then
run to achieve root access and give the attacker persistent
access to the host. However, unlike the original attack, our
adversary is aware that their attack can be detected from the
logs (through, e.g., [83], [23]) and therefore proceeds to erase
them immediately after achieving root access. We focus on log
erasure since it is known to be used in real-world attacks [56],
[37], [104], [16], [17], [90], [77], [9].

We simulated this attack by replaying its trace on one CUS-
TOS-enabled host v, which we chose at random from the 100
nodes of our distributed setup (see Section X). We configured
CUSTOS with parameters T=10 s, r=1, and w=4. The results
are shown in the timeline of Figure 6. CUSTOS replicated on
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Fig. 6: Timeline of our attack case study, where host v replays the
trace of the “THEIA Firefox Backdoor w/ Drakon In-Memory” attack
from the DARPA TC dataset [59]. The circles in the zoomed-in view
represent audits from other hosts to v: the green audits successfully
verified and replicated logs of the trace; the red audit occurred after
the attacker tampered with the logs and failed, causing CUSTOS to
raise an alert to the system administrator.

other hosts everything but the last 2 seconds of the trace before
the attacker succeeded at achieving privilege escalation. These
logs described the adversary’s initial compromise attempts,
their methods of establishing foothold and their download of a
malicious file. The attacker was able to erase the last 2 seconds
of the trace before they were replicated. These included the
logs describing their method of achieving privilege escalation.
However, CUSTOS detected this log tampering 3 seconds later
(at the next audit), and alerted the system administrator of the
violation. In conclusion, CUSTOS forces attackers into a “lose-
lose” situation: either they can be covert and not tamper with
logs (which can be used for forensics), or they can erase logs
but then be detected by CUSTOS.

XII. DISCUSSION

1) Value of CUSTOS after full system compromise: This
work considers methods for securing audit logs in the face of
a powerful anti-forensic adversary that has gained full control
of the system (i.e., root privilege); this threat model does not
reflect an artificially-enhanced attacker, but instead reflects the
common capabilities and methods of system intruders (e.g.,
[16], [17], [90], [121], [104], [37], [77], [9]). Against this
adversary, ensuring the correctness of log events recorded post-
compromise is not practical. This is because, after full system
compromise, no security measure can prevent the attacker from
controlling which events are logged. This grants them the
ability to make arbitrary claims about the events on the system.
This limitation is common to all secure logging solutions (cf.
Section XIII). Nonetheless, CUSTOS provides an invaluable
property even against root-level attackers—the intruder is
unable to undetectably edit or remove any recorded evidence of
their methods of entry onto the system, reconnaissance tactics
prior to escalating privilege, and their method of privilege
escalation. This information may implicate another node in the
network or lead to the discovery of a zero-day exploit, which
are valued at tens of thousands of dollars [92] and are thus
zealously guarded by attackers. Most importantly, these events

are suspicious and may lead to immediate detection when
CUSTOS is paired with a Threat Detection System (e.g., [115])
or log analysis mechanism (e.g., [23]). CUSTOS forces the
attacker into a no-win situation in which they must either
immediately erase this evidence (ensuring detection) or permit
it to be analyzed by the TDS (risking detection).

2) Integrity of centralized logging architectures: Among
existing solutions to tamper-evident logging, the most practical
is continuously streaming all logs, without integrity proofs, to
a centralized server. The security model for such architectures
assumes that the log server is fully trusted and can therefore
attest to the integrity of all logs stored on it. While an argument
could be made that the log server can be hardened against
attack, we do not find this to be a convincing solution to the
secure logging problem. Log management utilities are complex
software and there is no reason to believe that these artifacts
do not also contain exploits that could be identified by well-
funded attackers. In fact, while we are not aware of any
documented cases of log server compromise, given the general
strategies of lateral movement and anti-forensics associated
with APTs, it seems highly likely that log servers are the target
of frequent attack once perimeter defenses are breached.

3) Adaptive Attack Strategies: If the methods presented in
this work are deployed in practice, we must conservatively
assume that the intruder would adopt an optimal strategy for
evading detection. Because CUSTOS probabilistically guaran-
tees detection in the event of tampering, the attacker could
decide not to erase logs until they have completed their mission
objective, at which point they can erase the logs at minimal
cost. This strategy underscores the importance of pairing
the CUSTOS Logger with our decentralized auditing strategy,
which redundantly stores evidence on additional nodes in the
system. Further, this attack strategy demonstrates the impor-
tance of deploying CUSTOS alongside other security products
such as Threat Detection Systems and log analysis mechanisms
(e.g., [23]). Again, our ultimate goal in designing CUSTOS is to
create a “lose-lose” situation for the attackers, forcing them to
choose between a covert strategy and an anti-forensic strategy.

4) Reliance on TEEs: CUSTOS relies on features of TEEs
and this assumption limits its potential for deployability in
legacy enterprise environments without TEE support. While
this is a limitation of our paper, believe it is reasonable as TEEs
are enjoying increasingly wide deployment. For example, off-
the-shelf client and server Intel CPUs have been shipped with
SGX since 2015. Moreover, Intel recently announced the Intel
SGX Card which can equip legacy systems with SGX [48].

5) Race Conditions: We have considered log integrity
under two conditions: prior to machine compromise and after
machine compromise. We also saw that CUSTOS can protect all
events that have been recorded prior to machine compromise,
and assumed that after machine compromise the attacker can
take any action, including disabling the audit system. However,
we have not discussed at length whether or not the log events
describing the point of compromise are entered into the tamper-
evident record before the adversary is able to erase them.
In particular, if t is the moment of compromise, then for a
system call x, happening at time tx ≤ t, the corresponding
log message mx is guaranteed to be tamper-evident only if
it reaches CUSTOS’ enclave before a subsequent anti-forensic
action y (with ty > t) is executed. As such, there exists a race

13



condition between the time mx reaches the enclave and the
moment the attacker can erase it. A variety of factors, including
scheduling decisions, might affect whether this race condition
is exploitable. Nonetheless, recall that G1 is concerned with
detecting tampering only with log messages recorded pre-
compromise, which will likely include significant system calls
(e.g., events from 10:52 to 11:46:42 in Section XI): CUSTOS,
like prior work, does not seek to protect events that have not
yet been recorded by the moment of compromise.

6) Diagnosing Benign Faults: Finally, one limitation of
CUSTOS is that it cannot differentiate benign power failures
or crashes from protocol termination attacks, creating the
possibility for false-positive alerts. The root cause of this issue
is that Intel SGX and other TEEs are unable to measure the
runtime integrity state of the untrusted OS at the moment
when an asynchronous failure occurs, and are thus unable to
tell whether the failure was benign or caused by a malicious
OS. This is an important problem with existing TEEs, but
orthogonal to the aims of this work. Furthermore, alternate
mechanisms exist to distinguish failures from attacks: for
example, out-of-band information such as telemetry data from
power distribution units will allow the system administrator to
differentiate a power failure from an attack. The administrator
can also investigate faults using techniques from computer
forensics. For example, looking at logs that were not lost, open
ports and running processes may reveal useful information
on the type of fault which occurred; external network traffic
monitors and anti-rootkit scanners are also useful tools which
can help diagnose the issue. In any case, whether benign or
malicious, faults still require manual intervention: we provide
an in-depth discussion on how CUSTOS supports recovery from
errors in Appendix A. However, in practice, we believe that it
is not in an APT attacker’s interests to compromise a machine
and make it crash immediately before the next audit, as it
will cause the system administrator to intervene and effectively
prevent them from completing their mission [83].

XIII. RELATED WORK

A. Secure Logging

Many cryptographic approaches have been proposed for
tamper-evident logging. Bellare et al. [10] first defined the
notion of forward integrity for secure audit logs, which consists
of generating integrity proofs in such a way that when the
logging machine is compromised, previously committed logs
will remain tamper-evident. To achieve forward integrity, the
signing key evolves over time and expired keys are deleted
from the logger. Schemes that use symmetric primitives [10],
[108], [109], [114] traditionally rely on hash chains, of-
fering computational efficiency at the cost of higher data
overheads while assuming a fully trusted verifier. On the
other hand, systems that rely on asymmetric primitives [44]
provide third-party verifiability but incur larger computational
overheads both to generate and verify proofs. To minimize
these overheads, [73], [127] proposed the use of sequential
aggregate signatures, but these schemes have been shown to
be insecure [40]. Yavuz et al. presented an optimized signing
procedure at the cost of a key size that is linear with the number
of log entries and no support for fine-grained audits [128].
Most recently, Hartung et al. [41] presented a scheme that
combines forward-secure sequential aggregate signatures with

forward-secure signatures, but still incurs impractically large
computational costs to generate proofs.

The use of various cryptographic data structures has also
been proposed in the literature for storing data in a tamper-
evident fashion, such as history trees [20], [101] and hash
treaps [101]. The trust model for these systems is that messages
generated by a host are being stored in a remote untrusted
server, and the data structures provide an efficient interactive
protocol to verify that a message was correctly recorded.
CUSTOS also features untrusted storage servers, but in a more
aggressive threat model in which any node, including the
host itself, may be compromised. We thus use redundancy to
probabilistically ensure that messages are not erased. It would
be possible to extend CUSTOS to use these structures as a way
to verify that an auditor has not erased replicated logs.

Closely related to ours is the work from Karande et al. [57],
who were the first to introduce a protocol that leverages
Intel SGX to protect log integrity. Their system relies on
hash chains based on symmetric-key cryptography. However,
SGX-Log fails to provide third-party verifiability (G2) and
log availability (G4) since log access and verification rely
on the particular enclave that sealed the log. Further, SGX-
Log is not minimally invasive (G5) because encryption breaks
interoperability with log analysis applications; additionally,
SGX-Log’s reliance on frequent writes to an Intel SGX’s
monotonic counter is vulnerable to memory wear-out. Finally,
SGX-Log’s per-event processing overhead is too costly for the
high-frequency nature of system logging (cf. Section X-A).

B. Data Provenance and Attack Investigation

Related to system auditing are also [7], [31], [62], [63],
[84], [97], [99], [76], which focused on techniques to accu-
rately and efficiently collect and analyze system logs. This
line of work typically parses system logs into dependency
graphs (also known as provenance graphs) that allow to derive
insights and scrutinize the causal relationships between events.
Several methods have been proposed to automatically recog-
nize security incidents from these graphs [23], [45], [83], [42],
[11], [93], [35], [98], [124], to more precisely and accurately
reason about the stream of events [67], [75], [65], [74], [5], or
to more efficiently process queries to these graphs [71], [29],
[30], [54], [55], [96]. Notably, all this work fully trusts the
integrity of the logs used as input to their systems. CUSTOS can
thus complement these existing systems by providing tamper-
evidence to system logs.

C. Secure Hardware

Several works have leveraged the isolation guarantees of
Intel SGX [81], [50] to protect user-level applications across
domains. Representative systems that focused on “shielding”
applications in SGX enclaves are Haven [8] for a lightweight
OS, SCONE [1] for Docker containers and Panoply [113] for
POSIX interface threads. Glamdring [69] further proposed a
framework to semi-automatically partition applications to only
run security-sensitive code within enclaves. Rather than secure
entire applications, CUSTOS’ goal is to secure system logs,
thus minimizing the TCB to a small set of critical components.

Intel SGX has also served to enable applications that were
either not possible or not practical otherwise, including secure
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multi-party computation [3], functional encryption [28], obliv-
ious machine learning [91], integrity assurance for Internet
services [2], secure databases [100], secure network function
virtualization [112], privacy-preserving cloud computing [46],
secure MapReduce computations [110], [22] and access del-
egation [79]; or to enhance the security of systems such as
Tor [61], Zookeeper [15] and Spark [130]. Analogously to
these works, CUSTOS leverages secure hardware to enable
an application (tamper-evident auditing) to operate efficiently
under a stronger threat model that was previously possible.

D. Network Auditing

Adopting a similar threat model to CUSTOS’s are the
network forensic systems PeerReview [36] and SNooPy [131],
which detect faults amongst byzantine nodes participating in
a network protocol. The systems detect some faulty nodes in
distributed environments, provided that a critical mass of cor-
rect hosts still exists to witness the misbehavior. Further, these
systems only consider network events and cannot speak to the
internal state of hosts. In contrast, CUSTOS provides tamper-
evidence over considerably larger audit streams that include
system-level events and is probabilistically guaranteed to detect
compromised nodes engaging in anti-forensic activities.

XIV. CONCLUSION

In spite of the central importance of system logs in
responding to modern security incidents such as Advanced
Persistent Threats, today’s commodity operating systems fail to
assure the integrity of system logs beyond the use of typical
access controls. CUSTOS is the first tamper-evident logging
solution that supports practical operating system constraints. It
works by decoupling event logging from their cryptographic
commitment—without trading off security—leveraging fea-
tures of TEEs which are readily available on today’s hardware.
We demonstrated that CUSTOS’ log commitment protocol is
three orders of magnitude faster than prior secure logging
solutions, and imposes only between 2% and 7% runtime over-
head over insecure logging on intensive workloads. Further, we
showed that CUSTOS’ auditing protocol can detect integrity
violations with less than 3% network overhead. CUSTOS thus
demonstrates a realistic path forward to achieving practical
tamper-evident auditing of operating systems.
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APPENDIX A
RECOVERY FROM ERRORS

Recall from Section V that if corrupted or stale data is
provided as input to the Startup Phase, the Logger will raise
an error. There exist multiple scenarios where this situation
might happen: (1) the adversary, after achieving root access,
shuts down the Logger and then erases, corrupts or replaces the
sealed data stored on disk; (2) the adversary, after achieving
root access, force kills the Logger causing it to skip the
Shutdown Phase; (3) benign failures, such as power loss,
system crash, or disk corruption, happen. We discussed why, in
its current design, CUSTOS cannot distinguish between these
different scenarios (they all cause an error at the next Startup,
which will cause the generation of an alert at the next audit)
and requires manual intervention in both the benign and the
adversarial cases (Section XII). We now provide a discussion
of how CUSTOS recovers from these errors.

Algorithm 7 presents the Recovery phase that CUSTOS pro-
vides to recover from errors. This phase takes as an input the
sealed key and monotonic counter ID (sealed-key-id). Recall
that these data were copied onto the administrative machine at
the end of the Initialization Phase, and thus will not be lost,
even if the adversary corrupted them on the compromised host.
The enclave then unseals these data, destroys the monotonic
counter ID associated with them by calling DestroyMC (cf.
Table I) and runs the Initialization phase again, to create a
new key-pair and monotonic counter. Finally, the administrator
copies the new sealed-key-id (associated with the new key-pair
and monotonic counter ID) onto their machine and registers the
updated node’s public key into the key management service. It
is important to delete the previous monotonic counter before
re-initializing CUSTOS’ Logger in order not to reach the limit
of monotonic counters available to SGX. Also observe that it
is not in the adversary’s interest to abuse the Recovery phase
in an attempt to prevent detection (scenario 2), as it would
result in the host utilizing an unregistered pk and this would
still cause the generation of an alert at the next audit.

Once CUSTOS has been re-initialized, the integrity of the
logs for which a signature was generated prior to the failure
will remain verifiable using the previous public key. Future
logs will be verifiable using the new public key. Only the logs
which belonged to the current block at the time of the fault
(in scenarios 2 and 3) will not have an associated signature,
but the fact itself that CUSTOS generated an alert and the
administrator had to intervene to re-initialize it with a new key
pair and counter means that this tampering (whether benign
or malicious) did not go undetected, and thus faults do not
violate G1 (tamper-evident logs).
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https://www.splunk.com
http://uniforum.chi.il.us/slides/HardeningLinux/LAuS-Design.pdf
http://uniforum.chi.il.us/slides/HardeningLinux/LAuS-Design.pdf
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