Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86

<u>Yingchen Wang*, Riccardo Paccagnella*</u>, Elizabeth He, Hovav Shacham, Christopher W. Fletcher, David Kohlbrenner

(*co-first authors)

Power Side Channel vs Remote Timing

Power Side Channel vs Remote Timing

Power Side-Channel Attacks

Power Side Channel vs Remote Timing

Power Side-Channel Attacks

Remote Timing Attacks

Hertzbleed: a New Class of Attacks

Power Side-Channel Attacks

Hertzbleed: a New Class of Attacks

Power Side-Channel AttacksRemote Timing AttacksImage: Side-Channel AttacksImage: Side

Hertzbleed: exploiting dynamic frequency scaling (DVFS)

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

Frequency Depends on Power

Frequency Depends on Power

Power Consumption

Frequency Depends on Power

Power Consumption

CPU Frequency

Frequency Depends on Data

• Only vary the data values being processed ("Input").

Frequency Depends on Data

• Only vary the data values being processed ("Input").

Frequency Depends on Data

• Only vary the data values being processed ("Input").


```
Function Sum(first, second):

a = first

b = second

sum = a + b

return sum
```

Function Sum(first, second): a = first b = second sum = a + breturn sum

Test 1 (CVE 1 number): first = 2022 second = 23823

Function Sum(first, second): a = first b = second sum = a + breturn sum

Test 1 (CVE 1 number): first = 2022 second = 23823 **Test 2** (CVE 2 number): first = 2022 second = 24436

Function Sum(first, second): a = first b = second sum = a + breturn sum

 Test 1 (CVE 1 number):
 Test 2 (CVE 2 number):

 first = 2022
 first = 2022

 second = 23823
 second = 24436

Which Runs at a Higher Frequency?

Function Sum(first, second): a = first b = second sum = a + breturn sum **Test 1** (CVE 1 number): first = 2022 second = 23823 **Test 2** (CVE 2 number): first = 2022 second = 24436

Which Runs at a Higher Frequency?

Function Sum(first, second): a = first b = second sum = a + breturn sum

Test 1 (CVE 1 number): first = 2022 second = 23823 **Test 2** (CVE 2 number): first = 2022 second = 24436

Which Runs at a Higher Frequency?

We construct a *leakage model* to answer this question.

Three *independent* effects:

- 1. Hamming distance (HD)
- 2. Hamming weight (HW)
- 3. Bit positions!

Three *independent* effects:

- 1. Hamming distance (HD)
- 2. Hamming weight (HW)
- 3. Bit positions!

Three *independent* effects:

- 1. Hamming distance (HD)
- 2. Hamming weight (HW)
- 3. Bit positions!

Three *independent* effects:

- 1. Hamming distance (HD)
- 2. Hamming weight (HW)
- 3. Bit positions!

 $ax \leftarrow 000000011111111$ $ax \leftarrow 000111111100000$ HD = 10

Three *independent* effects:

- 1. Hamming distance (HD)
- 2. Hamming weight (HW)
- 3. Bit positions!

 $\begin{array}{rcl}
\text{ax} &\leftarrow & 000000011111111 \\
\text{ax} &\leftarrow & 0001111111100000 \\
\end{array} \right)$

$$ax \leftarrow 000000011111111$$

$$ax \leftarrow 000001111111000$$

$$HD = 6$$

Three *independent* effects:

- 1. Hamming distance (HD)
- 2. Hamming weight (HW)

3. Bit positions!

 $\begin{array}{rcl} ax &\leftarrow & 000000011111111 \\ ax &\leftarrow & 0001111111100000 \end{array} \end{array}$

HD = 10

Three *independent* effects:

- 1. Hamming distance (HD)
- 2. Hamming weight (HW)
- 3. Bit positions!

Three *independent* effects:

- 1. Hamming distance (HD)
- 2. Hamming weight (HW)
- 3. Bit positions!

Three *independent* effects:

- 1. Hamming distance (HD)
- 2. Hamming weight (HW)
- 3. Bit positions!

 $ax \leftarrow 1111001111001111$ $ax \leftarrow ax | ax$ HW = 12

Three *independent* effects:

- 1. Hamming distance (HD)
- 2. Hamming weight (HW)
- 3. Bit positions!

 $ax \leftarrow 1111001111001111$ $ax \leftarrow ax | ax$ HW = 12

 $ax \leftarrow 1100110011001100$ $ax \leftarrow ax \mid ax$ HW = 8

Three *independent* effects:

- 1. Hamming distance (HD)
- 2. Hamming weight (HW)
- 3. Bit positions!

 $ax \leftarrow 1111001111001111$ $ax \leftarrow ax | ax$ HW = 12

Three *independent* effects:

- 1. Hamming distance (HD)
- 2. Hamming weight (HW)
- 3. Bit positions!
Frequency Leakage Model

Three *independent* effects:

- 1. Hamming distance (HD)
- 2. Hamming weight (HW)
- 3. Bit positions!

 $ax \leftarrow 111111100000000$ $ax \leftarrow ax | ax$ HW = 8

Frequency Leakage Model

Three *independent* effects:

- 1. Hamming distance (HD)
- 2. Hamming weight (HW)
- 3. Bit positions!

- $ax \leftarrow 111111100000000$ $ax \leftarrow ax | ax$ HW = 8
- $ax \leftarrow 000000011111111$ $ax \leftarrow ax | ax$ HW = 8

Frequency Leakage Model

Three *independent* effects:

- 1. Hamming distance (HD)
- 2. Hamming weight (HW)
- 3. Bit positions!

 $ax \leftarrow 111111100000000$ $ax \leftarrow ax | ax$ HW = 8

rax = rcx = = r11 = INPUT
loop:
or %rax,%rcx // rcx = rax rcx
or %rax,%rdx // rdx = rax rdx
or %rax,%rsi // rsi = rax rsi
or %rax,%rdi // rdi = rax rdi
jmp loop

We control INPUT.

rax = rcx = = r	r11 = INPUT
loop:	
or %rax,%rcx	// rcx = rax rcx
or %rax,%rdx	// rdx = rax rdx
or %rax,%rsi	// rsi = rax rsi
or %rax,%rdi	// rdi = rax rdi
jmp loop	

We control INPUT. • HD = 0

rax = rcx = = r11 = INPUT	
loop:	
or %rax,%rcx // rcx = rax rcx	
or %rax,%rdx // rdx = rax rdx	
or %rax,%rsi // rsi = rax rsi	
or %rax,%rdi // rdi = rax rdi	
jmp loop	

We control INPUT.

- HD = 0
- HW: # of 1s in INPUT
- Bit positions: positions of 1s in INPUT

rax = rcx = = r1	.1 = INPUT
loop:	
or %rax,%rcx	// rcx = rax rcx
or %rax,%rdx	// rdx = rax rdx
or %rax,%rsi	// rsi = rax rsi
or %rax,%rdi	// rdi = rax rdi
jmp loop	

Delta freq between setting byte i to $0 \times ff$ (all 1s) and 0×00 (all 0s).

rax = rcx = = r	11 = INPUT
loop:	
or %rax,%rcx	// rcx = rax rcx
or %rax,%rdx	// rdx = rax rdx
or %rax,%rsi	// rsi = rax rsi
or %rax,%rdi	// rdi = rax rdi
jmp loop	

Delta freq between setting byte i to $0 \times ff$ (all 1s) and 0×00 (all 0s).

rax = rcx = =	rll = INPUT
loop:	
or %rax,%rcx	// rcx = rax rcx
or %rax,%rdx	// rdx = rax rdx
or %rax,%rsi	// rsi = rax rsi
or %rax,%rdi	// rdi = rax rdi
jmp loop	

Delta freq between setting byte i to $0 \times ff$ (all 1s) and 0×00 (all 0s).

1s in the most significant bytes affect frequency (and power) more than 1s in the least significant bytes!

More experiments in the paper!

• We also show that these effects are *independent* and *additive*.

More experiments in the paper!

- We also show that these effects are *independent* and *additive*.
- <u>Takeaway so far</u>: computing on data with different HD, HW, or bit patterns can result in different CPU frequencies

Frequency Shows Through Timing!

Supersingular Isogeny Key Encapsulation

• SIKE: public key encryption scheme used to secure a shared key

Supersingular Isogeny Key Encapsulation

- SIKE: public key encryption scheme used to secure a shared key
 - A key generation algorithm: $(pk, sk) \leftarrow KeyGen()$
 - An encapsulation algorithm: $(k, c) \leftarrow \text{Encaps}(pk)$
 - A decapsulation algorithm: $k \leftarrow \text{Decaps}(sk, c)$

Supersingular Isogeny Key Encapsulation

- SIKE: public key encryption scheme used to secure a shared key
 - A key generation algorithm: $(pk, sk) \leftarrow KeyGen()$
 - An encapsulation algorithm: $(k, c) \leftarrow \text{Encaps}(pk)$
 - A decapsulation algorithm: $k \leftarrow \text{Decaps}(sk, c)$
 - o c can be anything

SIKE is a widely studied PQC scheme

Introducing CIRCL: An Advanced Cryptographic Library

06/20/2019

PQC Standardization Process: Announcing Four Candidates to be Standardized, Plus Fourth Round Candidates

July 05, 2022

microsoft/ PQCrypto-SIDH

SIDH Library is a fast and portable software library that implements state-of-the-art supersingular isogeny cryptographic schemes. The chosen parameters aim...

AWS KMS and ACM now support the latest hybrid post-quantum TLS ciphers

Posted On: Mar 16, 2022

 $c' \rightarrow \text{Decapsulation(sk)}$

 $c' \rightarrow \text{Decapsulation(sk)}$

First bit = 0

 $c' \rightarrow \text{Decapsulation(sk)}$

First bit = 0

[18257987050416722270 10199691716891914004 5400919966884858033 442692516914010372 12773429574585753468 6570432586462705433 [18257987050416722270 10199691716891914004 5400919966884858033 442692516914010372 12773429574585753468 6570432586462705433 [16825517838011775506 9371345100327880239 15742012313593718125 10072166590248559322 4496384122748719145 4334614431051425958 [16825517838011775506 9371345100327880239 15742012313593718125 10072166590248559322 4496384122748719145 4334614431051425958 [16740411979447774187 12800619824809723005 10853297027917591334 14982452220610001381 3800581514987461454 145647062252048489 [16825517838011775506 9371345100327880239 15742012313593718125 10072166590248559322 4496384122748719145 4334614431051425958 [15266560997122586383 12357889650077672103 2140980805765852605 11095593088850010277 4943695249444786644 3789592123877698465 [16825517838011775506 9371345100327880239 15742012313593718125 10072166590248559322 4496384122748719145 4334614431051425958 [17514449317981757582 13935337384110704213 3655249417699386156 3985202987060982889 6244515921924735727 5708423491580141120 [16825517838011775506 9371345100327880239 15742012313593718125 10072166590248559322 4496384122748719145 4334614431051425958 [6399333684299274457 13212325817985983642 17337857241394967822 17279086886397221 17809839742204337052 17620746237730527955 [16825517838011775506 9371345100327880239 15742012313593718125 10072166590248559322 4496384122748719145 4334614431051425958 [7661921139160543741 14707234213449645962 12995640548762497303 6366902398648164883 8159614558565625434 1699352089132060401 [16825517838011775506 9371345100327880239 15742012313593718125 10072166590248559322 4496384122748719145 4334614431051425958 14502626884453394147 1547176376352717474 16458194833336887993 11353529865322400496 18111664530210683277 149136759461605553 [16825517838011775506 9371345100327880239 15742012313593718125 10072166590248559322 4496384122748719145 4334614431051425958 [16292054110271644132 16402476987519138840 15295718925489978418 11943223229381717154 3939738083047782821 732683889417381278 [16825517838011775506 9371345100327880239 15742012313593718125 10072166590248559322 4496384122748719145 4334614431051425958 [3109004547777643616 11545393661624748910 13937898936545491063 17877233530308340276 12362683729304085816 135336686219926690 [16825517838011775506 9371345100327880239 15742012313593718125 10072166590248559322 4496384122748719145 4334614431051425958 [14038051704368540915 5562911119597974536 6094927895374002108 15637883509309970852 13225965834113072042 1644826460763678436 [16825517838011775506 9371345100327880239 15742012313593718125 10072166590248559322 4496384122748719145 4334614431051425958 [18026979082695398473 4545160433979536065 8917105521003255669 8960042842321690905 14664092097322583836 17637668258660114635 [18026979082695398473 4545160433979536065 8917105521003255669 8960042842321690905 14664092097322583836 17637668258660114635 [1107797870512649449 3973889343021377473 15397880414487620049 16447202818859113108 13000223568372994767 1122662724253148057 [1107797870512649449 3973889343021377473 15397880414487620049 16447202818859113108 13000223568372994767 1122662724253148057 [4891726318645018377 8700905460331914174 16989373266006030040 12684865615969117539 7224866818255934154 7985345352476117507 [4891726318645018377 8700905460331914174 16989373266006030040 12684865615969117539 7224866818255934154 7985345352476117507 [12590157596330527957 4309529106583776359 4309400783656274695 3291966690254440795 2093371576388436535 9104435448238030533 3 [12590157596330527957 4309529106583776359 4309400783656274695 3291966690254440795 2093371576388436535 9104435448238030533 3 [14258829650860490490 3159096382619497511 1628360891341362022 188059088762649621 3407697486830288305 5337080128759733026 67 [14258829650860490490 3159096382619497511 1628360891341362022 188059088762649621 3407697486830288305 5337080128759733026 67 13595963780190459985 71752795375798642 12554667135981103617 11003386001452787279 16595807066695627110 16281754521029865652 [3595963780190459985 71752795375798642 12554667135981103617 11003386001452787279 16595807066695627110 16281754521029865652 [16439123124117376047 9302501002909150857 16313838798130370411 3270836818630356446 2783122717285403776 13912449128433841461 [3595963780190459985_71752795375798642_12554667135981103617_11003386001452787279_16595807066695627110_16281754521029865652

 $c' \rightarrow \text{Decapsulation(sk)}$

First bit = 0

[18257987050416722270 10199691716891914004 5400919966884858033 442692516914010372 12773429574585753468 6570432586462705433 [18257987050416722270 10199691716891914004 5400919966884858033 442692516914010372 12773429574585753468 6570432586462705433 [16825517838011775506 9371345100327880239 15742012313593718125 10072166590248559322 4496384122748719145 4334614431051425958 [16825517838011775506 9371345100327880239 15742012313593718125 10072166590248559322 4496384122748719145 4334614431051425958 [16740411979447774187 12800619824809723005 10853297027917591334 14982452220610001381 3800581514987461454 145647062252048489 [16825517838011775506 9371345100327880239 15742012313593718125 10072166590248559322 4496384122748719145 4334614431051425958 [15266560997122586383 12357889650077672103 2140980805765852605 11095593088850010277 4943695249444786644 3789592123877698465 [16825517838011775506 9371345100327880239 15742012313593718125 10072166590248559322 4496384122748719145 4334614431051425958 [17514449317981757582 13935337384110704213 3655249417699386156 3985202987060982889 6244515921924735727 5708423491580141120 [16825517838011775506 9371345100327880239 15742012313593718125 10072166590248559322 4496384122748719145 4334614431051425958 [6399333684299274457 13212325817985983642 17337857241394967822 17279086886397221 17809839742204337052 17620746237730527955 [16825517838011775506 9371345100327880239 15742012313593718125 10072166590248559322 4496384122748719145 4334614431051425958 [7661921139160543741 14707234213449645962 12995640548762497303 6366902398648164883 8159614558565625434 1699352089132060401 [16825517838011775506 9371345100327880239 15742012313593718125 10072166590248559322 4496384122748719145 4334614431051425958 14502626884453394147 1547176376352717474 16458194833336887993 11353529865322400496 18111664530210683277 149136759461605553 [16825517838011775506 9371345100327880239 15742012313593718125 10072166590248559322 4496384122748719145 4334614431051425958 [16292054110271644132 16402476987519138840 15295718925489978418 11943223229381717154 3939738083047782821 732683889417381278 [16825517838011775506 9371345100327880239 15742012313593718125 10072166590248559322 4496384122748719145 4334614431051425958 [3109004547777643616 11545393661624748910 13937898936545491063 17877233530308340276 12362683729304085816 135336686219926690 [16825517838011775506 9371345100327880239 15742012313593718125 10072166590248559322 4496384122748719145 4334614431051425958 [14038051704368540915 5562911119597974536 6094927895374002108 15637883509309970852 13225965834113072042 1644826460763678436 [16825517838011775506 9371345100327880239 15742012313593718125 10072166590248559322 4496384122748719145 4334614431051425958 [18026979082695398473 4545160433979536065 8917105521003255669 8960042842321690905 14664092097322583836 17637668258660114635 [18026979082695398473 4545160433979536065 8917105521003255669 8960042842321690905 14664092097322583836 17637668258660114635 [1107797870512649449 3973889343021377473 15397880414487620049 16447202818859113108 13000223568372994767 1122662724253148057 [1107797870512649449 3973889343021377473 15397880414487620049 16447202818859113108 13000223568372994767 1122662724253148057 [4891726318645018377 8700905460331914174 16989373266006030040 12684865615969117539 7224866818255934154 7985345352476117507 [4891726318645018377 8700905460331914174 16989373266006030040 12684865615969117539 7224866818255934154 7985345352476117507 [12590157596330527957 4309529106583776359 4309400783656274695 3291966690254440795 2093371576388436535 9104435448238030533 3 [12590157596330527957 4309529106583776359 4309400783656274695 3291966690254440795 2093371576388436535 9104435448238030533 3 [14258829650860490490 3159096382619497511 1628360891341362022 188059088762649621 3407697486830288305 5337080128759733026 67 [14258829650860490490 3159096382619497511 1628360891341362022 188059088762649621 3407697486830288305 5337080128759733026 67 13595963780190459985 71752795375798642 12554667135981103617 11003386001452787279 16595807066695627110 16281754521029865652 [3595963780190459985 71752795375798642 12554667135981103617 11003386001452787279 16595807066695627110 16281754521029865652 [16439123124117376047 9302501002909150857 16313838798130370411 3270836818630356446 2783122717285403776 13912449128433841461 [3595963780190459985_71752795375798642_12554667135981103617_11003386001452787279_16595807066695627110_16281754521029865652

First bit = 1

 $c' \rightarrow \text{Decapsulation(sk)}$

First bit = 0

[18257987050416722270 10199691716891914004 5400919966884858033 442692516914010372 12773429574585753468 6570432586462705433 [18257987050416722270 10199691716891914004 5400919966884858033 442692516914010372 12773429574585753468 6570432586462705433 [16825517838011775506 9371345100327880239 15742012313593718125 10072166590248559322 4496384122748719145 4334614431051425958 [16825517838011775506 9371345100327880239 15742012313593718125 10072166590248559322 4496384122748719145 4334614431051425958 [16740411979447774187 12800619824809723005 10853297027917591334 14982452220610001381 3800581514987461454 145647062252048489 [16825517838011775506 9371345100327880239 15742012313593718125 10072166590248559322 4496384122748719145 4334614431051425958 [15266560997122586383 12357889650077672103 2140980805765852605 11095593088850010277 4943695249444786644 3789592123877698465 [16825517838011775506 9371345100327880239 15742012313593718125 10072166590248559322 4496384122748719145 4334614431051425958 [17514449317981757582 13935337384110704213 3655249417699386156 3985202987060982889 6244515921924735727 5708423491580141120 [16825517838011775506 9371345100327880239 15742012313593718125 10072166590248559322 4496384122748719145 4334614431051425958 [6399333684299274457 13212325817985983642 17337857241394967822 17279086886397221 17809839742204337052 17620746237730527955 [16825517838011775506 9371345100327880239 15742012313593718125 10072166590248559322 4496384122748719145 4334614431051425958 [7661921139160543741 14707234213449645962 12995640548762497303 6366902398648164883 8159614558565625434 1699352089132060401 [16825517838011775506 9371345100327880239 15742012313593718125 10072166590248559322 4496384122748719145 4334614431051425958 14502626884453394147 1547176376352717474 16458194833336887993 11353529865322400496 18111664530210683277 149136759461605553 [16825517838011775506 9371345100327880239 15742012313593718125 10072166590248559322 4496384122748719145 4334614431051425958 [16292054110271644132 16402476987519138840 15295718925489978418 11943223229381717154 3939738083047782821 732683889417381278 [16825517838011775506 9371345100327880239 15742012313593718125 10072166590248559322 4496384122748719145 4334614431051425958 [3109004547777643616 11545393661624748910 13937898936545491063 17877233530308340276 12362683729304085816 135336686219926690 [16825517838011775506 9371345100327880239 15742012313593718125 10072166590248559322 4496384122748719145 4334614431051425958 [14038051704368540915 5562911119597974536 6094927895374002108 15637883509309970852 13225965834113072042 1644826460763678436 [16825517838011775506 9371345100327880239 15742012313593718125 10072166590248559322 4496384122748719145 4334614431051425958 [18026979082695398473 4545160433979536065 8917105521003255669 8960042842321690905 14664092097322583836 17637668258660114635 [18026979082695398473 4545160433979536065 8917105521003255669 8960042842321690905 14664092097322583836 17637668258660114635 [1107797870512649449 3973889343021377473 15397880414487620049 16447202818859113108 13000223568372994767 1122662724253148057 [1107797870512649449 3973889343021377473 15397880414487620049 16447202818859113108 13000223568372994767 1122662724253148057 [4891726318645018377 8700905460331914174 16989373266006030040 12684865615969117539 7224866818255934154 7985345352476117507 [4891726318645018377 8700905460331914174 16989373266006030040 12684865615969117539 7224866818255934154 7985345352476117507 [12590157596330527957 4309529106583776359 4309400783656274695 3291966690254440795 2093371576388436535 9104435448238030533 3 [12590157596330527957 4309529106583776359 4309400783656274695 3291966690254440795 2093371576388436535 9104435448238030533 3 [14258829650860490490 3159096382619497511 1628360891341362022 188059088762649621 3407697486830288305 5337080128759733026 67 [14258829650860490490 3159096382619497511 1628360891341362022 188059088762649621 3407697486830288305 5337080128759733026 67 13595963780190459985 71752795375798642 12554667135981103617 11003386001452787279 16595807066695627110 16281754521029865652 [3595963780190459985 71752795375798642 12554667135981103617 11003386001452787279 16595807066695627110 16281754521029865652 [16439123124117376047 9302501002909150857 16313838798130370411 3270836818630356446 2783122717285403776 13912449128433841461 [3595963780190459985_71752795375798642_12554667135981103617_11003386001452787279_16595807066695627110_16281754521029865652

First bit = 1

[0]	0	0	0	0 (90	0	0	0	0	0]	[0]	0	0	0 (96	Θ	0	0	0	0	0]}	{[]	150	728	314	131	148	398	323	03	59	150	280	74	02	16	716	555	12ز	29	12	52	56	56
[0]	0	0	0	0 (9 G	0	0	Θ	0	0]	[0]	0	0	0 (96	Θ	0	0	0	0	0]}	{[0	0	0	0	0	0	0	0	0 (9 (0 0]	[0	0	0	0	0	0	0	0	0	0	0	0]
[0]	0	0	0	0 (90	0	0	0	0	0]	[0]	0	0	0 (96	Θ	0	0	0	0	0]}	{[0	0	0	0	0	0	0	0	0	9 (0 0	[0	0	0	0	0	0	0	0	0	0	0	0]
0]	0	0	0	0 (9 0	0	0	0	0	0]	0]	0	0	0 (9 6	0	0	0	0	0	0]}	{[0	0	0	0	0	0	0	0	0	9 (0 0	[0	0	0	0	0	0	0	0	0	0	0	01
01	0	0	0	0 (9 0	0	0	0	0	01	0]	0	0	0 (9 6	0	0	0	0	0	011	{[0	0	0	0	0	0	0	0	0	9 (9 0 I	Ī O	0	0	0	0	0	0	0	0	0	0	01
01	0	0	0	0 (9 G	0	0	Θ	0	01	0 j	0	0	0 (9 6	Θ	0	0	0	Θ	011	11	0	0	0	0	0	0	0	0	9 (9 0 I	Î O	0	0	Θ	0	0	0	0	0	0	0	01
01	0	Θ	0	0 (9 0	0	0	Θ	0	01	01	0	0	0 (96	Θ	0	0	0	Θ	011	11	0	Θ	0	0	0	Θ	0	0	9 (9 0 I	ĪO	0	0	Θ	0	0	Θ	0	0	0	0	0Ì
01	0	0	0	0 (9 G	0	0	Θ	0	01	01	0	0	0 (96	Θ	0	0	Θ	Θ	011	11	0	0	0	0	0	Θ	0	0 1		9 O I	ĪO	0	Θ	Θ	0	0	Θ	0	0	Θ	0	0Ì
01	0	0	0	0 (9 G	0	0	Θ	0	01	0 Ì	0	0	0 (96	Θ	0	0	Θ	0	011	11	0	0	0	0	0	Θ	0	0 1		9 O I	Î O	0	Θ	Θ	0	0	Θ	0	0	0	0	οi
01	0	0	0	0 (9 0	0	0	0	0	01	0 Î	0	0	0 (96	Θ	0	0	0	0	011	11	0	0	0	0	0	0	0	0 1		9 O I	0 Î	0	0	0	0	0	0	0	0	0	0	οi
0]	0	0	0	0 (9 0	0	0	0	0	01	0]	0	0	0 (9 6	0	0	0	0	0	011	11	0	0	0	0	0	0	0	0		0 01	[0	0	0	0	0	0	0	0	0	0	0	01
01	0	0	0	0 (9 0	0	Θ	0	0	01	0]	0	0	0 (9 6	0	0	0	0	0	011	{[0	0	0	0	0	0	0	0	0	9 (9 0 I	Ī O	0	0	0	0	0	0	0	0	0	0	01
01	0	0	0	0 (9 G	0	0	Θ	0	01	0 j	0	0	0 (9 6	Θ	0	0	0	Θ	011	11	0	0	0	0	0	0	0	0	9 (9 0 I	Ī O	0	0	Θ	0	0	0	0	0	0	0	0 İ
[0]	0	0	0	0 (9 0	0	0	Θ	0	0]	[0]	0	0	0 (9 6	0	0	0	0	0	0]}	{[0	0	Θ	0	0	0	0	0	0	9 (9 O]	[0	0	0	0	0	0	Θ	0	0	Θ	0	0 j
[0]	0	0	0	0 (9 G	0	0	Θ	0	0]	[0]	0	0	0 (96	Θ	0	0	Θ	0	0]}	{[0	0	0	0	0	0	0	0	0 (9 (0 0]	[0	0	Θ	0	0	0	0	0	0	Θ	0	0]
[0]	0	0	0	0 (9 G	0	0	0	0	0]	[0]	0	0	0 (96	Θ	0	0	0	0	0]}	{[0	0	0	0	0	0	0	0	0 (9 (0 0	[0	0	0	0	0	0	0	0	0	0	0	0]
[0]	0	0	0	0 (90	0	0	0	0	0]	[0]	0	0	0 (96	0	0	0	0	0	0]}	{[0	0	0	0	0	0	0	0	0	9 (9 O]	[0	0	0	0	0	0	Θ	0	0	0	0	0]
[0]	0	0	0	0 (90	0	0	0	0	0]	[0]	0	0	0 (9 6	0	0	0	0	0	0]}	{[0	0	0	0	0	0	0	0	0	9 (0]	[0	0	0	0	0	0	0	0	0	0	0	0]
[0]	0	0	Θ	0 (90	0	0	0	0	0]	[0]	0	0	0 (96	Θ	0	0	0	0	0]}	{[0	0	0	0	0	0	0	0	0	9 (0]	[0	0	0	0	0	0	0	0	0	0	0	0]
[0]	0	0	Θ	0 (90	0	0	Θ	0	0]	[0]	0	0	0 (96	Θ	0	0	Θ	0	0]}	{[0	0	0	0	0	0	Θ	0	0	9 (0 0]	[0	0	Θ	0	0	0	0	0	0	0	0	0]
[0]	0	0	0	0 (90	0	0	0	0	0]	[0	0	0	0 (96	0	0	0	0	0	0]}	{[0	0	0	0	0	0	0	0	0	9 (0]	[0	0	0	0	0	0	Θ	0	0	Θ	0	0]
[0]	0	0	0	0 (90	0	0	Θ	0	0]	[0	0	0	0 (96	Θ	0	0	Θ	0	0]}	{[6	0	0	0	0	0	0	0	0	9 (90]	[0	0	Θ	0	0	0	0	0	0	Θ	0	0]
[0]	0	0	0	0 (90	0	0	0	0	0]	[0]	0	0	0 (96	0	0	0	0	0	0]}	{[6	0	0	0	0	0	0	0	0	9 (0]	[0	0	0	0	0	0	Θ	0	0	0	0	0]
[0]	0	0	0	0 (90	0	0	0	0	0]	[0]	0	0	0 (9 6	0	0	0	0	0	0]}	{[6	0	0	0	0	0	0	0	0	9 (0]	[0	0	0	0	0	0	0	0	0	0	0	0]
[0]	0	0	0	0 (90	0	0	0	0	0]	[0]	0	0	0 (96	0	0	0	0	0	0]}	{[0	0	0	0	0	0	0	0	0	9 (0]	[0	0	0	0	0	0	0	0	0	0	0	0]
[0]	0	0	0	0 (90	0	0	Θ	0	0]	[0]	0	0	0 (96	0	0	0	Θ	0	0]}	{[6	0	0	0	0	0	Θ	0	0	9 (90]	[0	0	Θ	0	0	0	0	0	0	0	0	0]
[0	0	0	0	0 (9 0	0	0	0	0	0]	[0	0	0	0 (9 6	0	0	0	0	0	0]}	{[6	0	0	0	0	0	0	0	0	9 (9 0]	[0	0	0	0	0	0	0	0	0	0	0	0]
[0]	0	0	0	0 (90	0	0	0	0	0]	[0]	0	0	0 (96	0	0	0	0	0	0]}	{[6	0	0	0	0	0	0	0	0	9 (90]	[0	0	0	0	0	0	0	0	0	0	0	0]
[0]	0	0	0	0 (90	0	0	0	0	0]	[0]	0	0	0 (96	0	0	0	0	0	0]}	{[6	0	0	0	0	0	0	0	0	9 (90]	[0	0	0	0	0	0	0	0	0	0	0	0]
[0]	0	0	0	0 (90	0	0	0	0	0]	[0]	0	0	0 (96	0	0	0	0	0	0]}	{[6	0	0	0	0	0	0	0	0	9 (90]	[0	0	0	0	0	0	0	0	0	0	0	0]
[0]	0	0	0	0 (90	0	0	0	0	0]	[0]	0	0	0 (9 6	0	0	0	0	0	0]}	{[6	0	0	0	0	0	0	0	0	9 (0]	[0	0	0	0	0	0	0	0	0	0	0	0]
[0]	0	0	0	0 (90	0	0	0	0	0]	[0]	0	0	0 (96	0	0	0	0	0	0]}	{[0	0	0	0	0	0	0	0	0	9 (9 0]	[0	0	0	0	0	0	0	0	0	0	0	0]
[0	0	0	0	0 (9 0	0	0	0	0	0]	[0	0	0	0 (9 6	0	0	0	0	0	0]}	{[0	0	0	0	0	0	0	0	0	9 (0]	[0	0	0	0	0	0	0	0	0	0	0	0]
[0]	0	0	0	0 (9 0	0	0	0	0	0]	[0	0	0	0 (9 6	0	0	0	0	0	0]}	{[6	0	0	0	0	0	0	0	0	9 (9 0]	[0	0	0	0	0	0	0	0	0	0	0	0]
[0]	0	0	0	0 (90	0	0	0	0	0]	[0	0	0	0 (96	0	0	0	0	0	0]}	{[6	0	0	0	0	0	0	0	0	9 (9 0]	[0	0	0	0	0	0	Θ	0	0	Θ	0	0]
[0]	Θ	Θ	Θ	0 0	9.0	Θ	Θ	Θ	Θ	01	ΓΘ	Θ	Θ	0 0	9.6	Θ	Θ	Θ	Θ	Θ	011	11	0	Θ	Θ	Θ	Θ	Θ	Θ	0	a 1	0 01	[0]	0	Θ	Θ	Θ	Θ	Θ	Θ	Θ	0	۰ O	01

 $c' \rightarrow \text{Decapsulation(sk)}$

First bit = 0	First bit = 1
$a = a \times R_1$ $a = a \times R_2$ $a = a \times R_3$	$a = a \times 0$ $a = a \times R_2$ $a = a \times R_3$
$a = a \times R_n$	$a = a \times R_n$

 $c' \rightarrow \text{Decapsulation(sk)}$

First bit = 0	First bit = 1
$a = a \times R_1$ $a = a \times R_2$ $a = a \times R_3$	$a = a \times 0$ $a = a \times R_2$ $a = a \times R_3$
$a = a \times R_n$	$a = a \times R_n$

 $c' \rightarrow \text{Decapsulation(sk)}$

First bit = 0	First bit = 1
$a = a \times R_1$ $a = a \times R_2$ $a = a \times R_3$	$a = a \times 0$ $a = a \times R_2$ $a = a \times R_3$
$a = a \times R_n$	$a = a \times R_n$
More power	Less power

Lower frequency Longer runtime Less power Higher frequency Shorter runtime

Algorithm 8: Three point ladder

function Ladder3pt **Input:** $m = (m_{\ell-1}, ..., m_0)_2 \in \mathbb{Z}, (x_P, x_Q, x_{Q-P}), \text{ and } (A : 1)$ **Output:** $(X_{P+[m]Q} : Z_{P+[m]Q})$ 1 $((X_0:Z_0), (X_1:Z_1), (X_2:Z_2)) \leftarrow ((x_0:1), (x_P:1), (x_{O-P}:1))$ 2 $a_{24}^+ \leftarrow (A+2)/4$ 3 for i = 0 to $\ell - 1$ do if $m_i = 1$ then 4 $((X_0:Z_0), (X_1:Z_1)) \leftarrow \text{xDBLADD}((X_0:Z_0), (X_1:Z_1), (X_2:Z_2), (a_{24}^+:1))$ 5 else 6 $((X_0:Z_0), (X_2:Z_2)) \leftarrow \texttt{xDBLADD}((X_0:Z_0), (X_2:Z_2), (X_1:Z_1), (a_{24}^+:1))$ 7 8 return $(X_1 : Z_1)$

Taken from SIKE's specification Actual implementation has **no branches**

Algorithm 8: Three point ladder

function Ladder3pt Input: $m = (m_{\ell-1}, \dots, m_0)_2 \in \mathbb{Z}, (x_P, x_Q, x_{Q-P}), \text{ and } (A:1)$ **Output:** $(X_{P+[m]Q} : Z_{P+[m]Q})$ 1 $((X_0:Z_0), (X_1:Z_1), (X_2:Z_2)) \leftarrow ((x_0:1), (x_P:1), (x_{O-P}:1))$ 2 $a_{24}^+ \leftarrow (A+2)/4$ 3 for i = 0 to $\ell - 1$ do if $m_i = 1$ then 4 $((X_0:Z_0), (X_1:Z_1)) \leftarrow \text{xDBLADD}((X_0:Z_0), (X_1:Z_1), (X_2:Z_2), (a_{24}^+:1))$ 5 else 6 $((X_0:Z_0), (X_2:Z_2)) \leftarrow \text{xDBLADD}((X_0:Z_0), (X_2:Z_2), (X_1:Z_1), (a_{24}^+:1))$ 7 8 return $(X_1 : Z_1)$

Taken from SIKE's specification Actual implementation has **no branches**

m is the (static) secret key

P and Q are points included in the ciphertext

Algorithm 8: Three point ladder

function Ladder3pt Taken from SIKE's specification Input: $m = (m_{\ell-1}, \dots, m_0)_2 \in \mathbb{Z}, (x_P, x_Q, x_{Q-P}), \text{ and } (A:1)$ Actual implementation has no branches **Output:** $(X_{P+[m]Q} : Z_{P+[m]Q})$ 1 $((X_0:Z_0), (X_1:Z_1), (X_2:Z_2)) \leftarrow ((x_0:1), (x_P:1), (x_{O-P}:1))$ 2 $a_{24}^+ \leftarrow (A+2)/4$ *m* is the (static) secret key 3 for i = 0 to $\ell - 1$ do if $m_i = 1$ then P and Q are points included $((X_0:Z_0), (X_1:Z_1)) \leftarrow \text{xDBLADD}((X_0:Z_0), (X_1:Z_1), (X_2:Z_2), (a_{24}^+:1))$ in the ciphertext else $((X_0:Z_0), (X_2:Z_2)) \leftarrow \text{xDBLADD}((X_0:Z_0), (X_2:Z_2), (X_1:Z_1), (a_{24}^+:1))$ At each loop iteration, the data flow depends **8 return** $(X_1 : Z_1)$ on P, Q and m_i

 $2U, U+V \leftarrow ext{xDBLADD}(U,V,W) ext{ where } W = U - V$

 $2U, U+V \leftarrow ext{xDBLADD}(U, V, W) ext{ where } W = U - V$

$$W \in \{ T, O \} \longrightarrow 2U, (0:0) \leftarrow \texttt{xDBLADD}(U, V, W)$$

 $2U, U+V \leftarrow ext{xDBLADD}(U, V, W) ext{ where } W = U - V$

W
$$\in \{ T, O \} \longrightarrow 2U, (0:0) \leftarrow \text{xdbladd}(U, V, W)$$

(0:0) is not a point

 $2U, U+V \leftarrow ext{xDBLADD}(U, V, W) ext{ where } W = U - V$

$$W \in \{ T, O \} \longrightarrow 2U, (0:0) \leftarrow \text{xDBLADD}(U, V, W)$$
$$(0:0) \text{ is not a point}$$

$$U \text{ or } V \text{ or } W = (0:0) \longrightarrow 2U, (0:0) \leftarrow \text{ xDBLADD}(U, V, W)$$

Algorithm 8: Three point ladder

function Ladder3pt Input: $m = (m_{\ell-1}, \dots, m_0)_2 \in \mathbb{Z}, (x_P, x_Q, x_{Q-P}), \text{ and } (A:1)$ **Output:** $(X_{P+[m]Q} : Z_{P+[m]Q})$ 1 $((X_0:Z_0), (X_1:Z_1), (X_2:Z_2)) \leftarrow ((x_0:1), (x_P:1), (x_{O-P}:1))$ 2 $a_{24}^+ \leftarrow (A+2)/4$ 3 for i = 0 to $\ell - 1$ do if $m_i = 1$ then $((X_0:Z_0), (X_1:Z_1)) \leftarrow \text{xDBLADD}((X_0:Z_0), (X_1:Z_1), (X_2:Z_2), (a_{24}^+:1))$ else $((X_0:Z_0), (X_2:Z_2)) \leftarrow \text{xDBLADD}((X_0:Z_0), (X_2:Z_2), (X_1:Z_1), (a_{24}^+:1))$

8 return $(X_1 : Z_1)$

Taken from SIKE's specification Actual implementation has **no branches**

Iteration i

for i = 0 to $\ell - 1$ do if $m_i = 1$ then $((X_0 : Z_0), (X_1 : Z_1)) \leftarrow \text{xDBLADD}((X_0 : Z_0), (X_1 : Z_1), (X_2 : Z_2), (a_{24}^+ : 1))$ else $((X_0 : Z_0), (X_2 : Z_2)) \leftarrow \text{xDBLADD}((X_0 : Z_0), (X_2 : Z_2), (X_1 : Z_1), (a_{24}^+ : 1))$
Iteration *i*

fo	$\mathbf{r} \ i = 0 \ \mathbf{to} \ \ell - 1 \ \mathbf{do}$			
	if $m_i = 1$ then			
	$((X_0:Z_0), (X_1:Z_1)) \leftarrow \text{xDBLADD}((X_0:Z_0), (X_1:Z_1),$	$(X_2:Z_2)$, $(a_{24}^+:$	1))
	else			
	$((X_0:Z_0), (X_2:Z_2)) \leftarrow \text{xDBLADD}((X_0:Z_0), (X_2:Z_2)),$	$(X_1 : Z_1)$	$,(a_{24}^{+}:$	1))
		1		
			_	
		T or C)	

i	for $i = 0$ to $\ell - 1$ do		
	if $m_i = 1$ then	_	
	$((X_0:Z_0), (X_1:$	$Z_1) \leftarrow \text{xDBLADD}((X_0 : Z_0), (X_1 : Z_1),$	$(X_2:Z_2), (a_{24}^+:1))$
	else		
	$((X_0:Z_0), (X_2:$	$Z_2) \leftarrow \text{xDBLADD}((X_0 : Z_0), (X_2 : Z_2),$	$(X_1:Z_1), (a_{24}^+:1))$
			<u> </u>
	(0:	0)	<i>T</i> or <i>0</i>

Iteration

Iteration *i*+1

for i = 0 to $\ell - 1$ do if $m_i = 1$ then $((X_0 : Z_0), (X_1 : Z_1)) \leftarrow \text{xDBLADD}((X_0 : Z_0), (X_1 : Z_1), (X_2 : Z_2), (a_{24}^+ : 1))$ else $((X_0 : Z_0), (X_2 : Z_2)) \leftarrow \text{xDBLADD}((X_0 : Z_0), (X_2 : Z_2), (X_1 : Z_1), (a_{24}^+ : 1))$

Iteration *i*+1

for $i = 0$ to $\ell - 1$ do		
if $m_i = 1$ then		l
$((X_0:Z_0), (X_1:Z_1)) \leftarrow \text{xDBLADD}((X_0:Z_0), (X_1:Z_1),$	$(X_2:Z_2)$	$,(a_{24}^{+}:1))$
else		
$((X_0:Z_0), (X_2:Z_2)) \leftarrow \text{xDBLADD}((X_0:Z_0), (X_2:Z_2),$	$(X_1 : Z_1)$	$,(a_{24}^{+}:1))$
	1	
	(0:0)	

Iteration *i*+1

for $i = 0$ to $\ell - 1$ do			
if $m_i = 1$ then			1
$((X_0:Z_0), (X_1:Z_1)) \leftarrow \texttt{xDBLADD}((X_0:Z_0))$), $(X_1:Z_1)$,	$(X_2:Z_2)$	$(a_{24}^+:1))$
else			
$((X_0:Z_0), (X_2:Z_2)) \leftarrow \text{xDBLADD}((X_0:Z_0))$), $(X_2:Z_2)$,	$(X_1:Z_1)$	$(a_{24}^+:1))$
	1	1	
	(0:0)	(0:0)	

for i = 0 to $\ell - 1$ do if $m_i = 1$ then $((X_0 : Z_0), (X_1 : Z_1)) \leftarrow \text{xDBLADD}((X_0 : Z_0), (X_1 : Z_1), (X_2 : Z_2), (a_{24}^+ : 1))$ else $((X_0 : Z_0), (X_2 : Z_2)) \leftarrow \text{xDBLADD}((X_0 : Z_0), (X_2 : Z_2), (X_1 : Z_1), (a_{24}^+ : 1))$

for $i = 0$ to $\ell - 1$ do	
if $m_i = 1$ then	
$((X_0:Z_0), (X_1:Z_1)) \leftarrow xDBLADD((X_0:Z_0), (X_1:Z_1)),$	$(X_2:Z_2), (a_{24}^+:1))$
else	
$((X_0:Z_0), (X_2:Z_2)) \leftarrow \text{xDBLADD}((X_0:Z_0), (X_2:Z_2)),$	$(X_1:Z_1), (a_{24}^+:1))$
	†
	TorO
	1 () ()

$$\mu_i$$
 = (m_i , ..., m_0)₂

for i = 0 to $\ell - 1$ do if $m_i = 1$ then $((X_0 : Z_0), (X_1 : Z_1)) \leftarrow xDBLADD((X_0 : Z_0), (X_1 : Z_1), (X_2 : Z_2), (a_{24}^+ : 1)))$ else $((X_0 : Z_0), (X_2 : Z_2)) \leftarrow xDBLADD((X_0 : Z_0), (X_2 : Z_2), (X_1 : Z_1), (a_{24}^+ : 1)))$

$$\mu_i$$
 = (m_i , ..., m_0)₂

for i = 0 to $\ell - 1$ do if $m_i = 1$ then $((X_0 : Z_0), (X_1 : Z_1)) \leftarrow xDBLADD((X_0 : Z_0), (X_1 : Z_1), (X_2 : Z_2), (a_{24}^+ : 1)))$ else $((X_0 : Z_0), (X_2 : Z_2)) \leftarrow xDBLADD((X_0 : Z_0), (X_2 : Z_2), (X_1 : Z_1), (a_{24}^+ : 1)))$

$$\mu_i$$
 = (m_i , ..., m_0)₂

for i = 0 to $\ell - 1$ do if $m_i = 1$ then $((X_0 : Z_0), (X_1 : Z_1)) \leftarrow xDBLADD((X_0 : Z_0), (X_1 : Z_1), (X_2 : Z_2), (a_{24}^+ : 1)))$ else $((X_0 : Z_0), (X_2 : Z_2)) \leftarrow xDBLADD((X_0 : Z_0), (X_2 : Z_2), (X_1 : Z_1), (a_{24}^+ : 1)))$

$$\mu_{k-1} \checkmark \longrightarrow Ciphertext c'$$

$$\mu_i = (m_i, ..., m_0)_2$$

_	
	for $i = 0$ to $\ell - 1$ do
	if $m_i = 1$ then
	$((X_0:Z_0), (X_1:Z_1)) \leftarrow \text{xDBLADD}((X_0:Z_0), (X_1:Z_1), (X_2:Z_2), (a_{24}^+:1))$
	else
	$((X_0:Z_0), (X_2:Z_2)) \leftarrow \text{xDBLADD}((X_0:Z_0), (X_2:Z_2), (X_1:Z_1), (a_{24}^+:1)))$
-	
	I
	$m_k \neq m_{k-1} \longrightarrow T$
$\mu_{k-1} \checkmark \longrightarrow Cip$	hertext c'

$$\mu_i$$
 = (m_i , ... , m_0)₂

$$\mu_i$$
 = (m_i , ... , m_0)₂

$$\mu_i$$
 = (m_i , ..., m_0)₂

• An attacker who knows the *i* least significant bits of *m* (the key) can construct ciphertext c' such that:

• An attacker who knows the *i* least significant bits of *m* (the key) can construct ciphertext c' such that:

- If $m_i \neq m_{i-1}$

- If
$$m_i = m_{i-1}$$

• An attacker who knows the *i* least significant bits of *m* (the key) can construct ciphertext c' such that:

- If $m_i \neq m_{i-1}$

Data flow has low HW and low HD → lower power consumption → higher frequency → shorter runtime!

- If $m_i = m_{i-1}$

• An attacker who knows the *i* least significant bits of *m* (the key) can construct ciphertext c' such that:

- If $m_i \neq m_{i-1}$

Data flow has low HW and low HD → lower power consumption → higher frequency → shorter runtime!

- If $m_i = m_{i-1}$

Data flow does not have low HW and low HD → higher power consumption → lower frequency → longer runtime!

Target Implementation

- Cloudflare's CIRCL (Go)
- Microsoft's PQCrypto-SIDH (C)
 - NIST Post-Quantum Cryptography competition submission

Frequency and Power Measurement

Remote Timing Attack Model

Client

Server

Remote Timing Attack Results

CIRCL: Recovered full key in 36 hours

Remote Timing Attack Results

if secret == 1 then routine();

No secret-dependent branches

No secret-dependent memory accesses

$$res = x * secret / 255.0f$$

No secret inputs to variable-time instructions

• Current practices for how to write constant-time code are no longer sufficient to guarantee constant-time execution.

if secret == 1 then routine();

No secret-dependent branches

$$state = array |secret|$$

No secret-dependent memory accesses

$$res = x * secret / 255.0f$$

No secret inputs to variable-time instructions

- Current practices for how to write constant-time code are no longer sufficient to guarantee constant-time execution.
- Hertzbleed turns power leakage into timing leakage.

if
$$secret == 1$$
 then
routine();

No secret-dependent branches

No secret-dependent memory accesses

$$res = x * secret / 255.0f$$

No secret inputs to variable-time instructions

Conclusion

- Frequency leaks information about the data values being processed.
- SIKE is vulnerable to a new CCA attack that can be exploited remotely using Hertzbleed.
- Current practices for how to write constanttime code are no longer sufficient to guarantee constant time execution.

www.hertzbleed.com

FPSG-UIUC hertzbleed C Stars 406

