
Hertzbleed: Turning Power Side-
Channel Attacks Into Remote

Timing Attacks on x86

Yingchen Wang*, Riccardo Paccagnella*, Elizabeth He,
Hovav Shacham, Christopher W. Fletcher, David Kohlbrenner

(*co-first authors)

2Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

Power Side Channel vs Remote Timing

Power Side-Channel Attacks

3Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

https://github.com/h2lab/smartleia-demo

Power Side Channel vs Remote Timing

Power Side-Channel Attacks

4Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

Remote Timing Attacks

Power Side Channel vs Remote Timing

https://github.com/h2lab/smartleia-demo

Power Side-Channel Attacks

5Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

Remote Timing Attacks

Hertzbleed: a New Class of Attacks

https://github.com/h2lab/smartleia-demo

Power Side-Channel Attacks

6Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

Remote Timing Attacks

Hertzbleed: a New Class of Attacks

Hertzbleed: exploiting
dynamic frequency scaling (DVFS)

https://github.com/h2lab/smartleia-demo

DVFS on a modern Intel CPU

7Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

DVFS on a modern Intel CPU

8Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

[⋅⋅⋅]

DVFS on a modern Intel CPU

9Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

Max
Turbo
State

[⋅⋅⋅]

DVFS on a modern Intel CPU

10Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

Max
Turbo
State

Steady
State

[⋅⋅⋅]

DVFS on a modern Intel CPU

11Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

Steady
State

[⋅⋅⋅]

Frequency Depends on Power

12Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

Frequency Depends on Power

13Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

Power Consumption

Frequency Depends on Power

14Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

CPU FrequencyPower Consumption

Frequency Depends on Data
• Only vary the data values being processed (“Input”).

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 15

Frequency Depends on Data
• Only vary the data values being processed (“Input”).

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 16

Power Consumption

Frequency Depends on Data
• Only vary the data values being processed (“Input”).

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 17

CPU FrequencyPower Consumption

Example of Data-Dependent Frequency

18Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

Function Sum(first, second):
a = first
b = second
sum = a + b
return sum

Example of Data-Dependent Frequency

19Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

Function Sum(first, second):
a = first
b = second
sum = a + b
return sum

Test 1 (CVE 1 number):
first = 2022
second = 23823

Example of Data-Dependent Frequency

20Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

Function Sum(first, second):
a = first
b = second
sum = a + b
return sum

Test 1 (CVE 1 number):
first = 2022
second = 23823

Test 2 (CVE 2 number):
first = 2022
second = 24436

Example of Data-Dependent Frequency

21Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

Function Sum(first, second):
a = first
b = second
sum = a + b
return sum

Test 1 (CVE 1 number):
first = 2022
second = 23823

Test 2 (CVE 2 number):
first = 2022
second = 24436

Which Runs at a Higher Frequency?

Example of Data-Dependent Frequency

22Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

Function Sum(first, second):
a = first
b = second
sum = a + b
return sum

Test 1 (CVE 1 number):
first = 2022
second = 23823

Test 2 (CVE 2 number):
first = 2022
second = 24436

Which Runs at a Higher Frequency?

Example of Data-Dependent Frequency

23Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

Function Sum(first, second):
a = first
b = second
sum = a + b
return sum

Test 1 (CVE 1 number):
first = 2022
second = 23823

Test 2 (CVE 2 number):
first = 2022
second = 24436

Which Runs at a Higher Frequency?

We construct a leakage model
to answer this question.

Frequency Leakage Model

24Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

Frequency Leakage Model
Three independent effects:
1. Hamming distance (HD)
2. Hamming weight (HW)
3. Bit positions!

25Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

Frequency Leakage Model

1. Hamming distance (HD)
2.
3.

26Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

Frequency Leakage Model

1. Hamming distance (HD)
2.
3.

27Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

ax ← 0000000011111111
ax ← 0001111111100000

Frequency Leakage Model

1. Hamming distance (HD)
2.
3.

28Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

ax ← 0000000011111111
ax ← 0001111111100000

HD = 10

Frequency Leakage Model

1. Hamming distance (HD)
2.
3.

29Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

ax ← 0000000011111111
ax ← 0001111111100000

HD = 10

ax ← 0000000011111111
ax ← 0000011111111000

HD = 6

Frequency Leakage Model

1. Hamming distance (HD)
2.
3.

30Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

ax ← 0000000011111111
ax ← 0001111111100000

HD = 10

ax ← 0000000011111111
ax ← 0000011111111000

HD = 6
Runs at a higher

frequency!

Consumes less
power

Frequency Leakage Model

1.
2. Hamming weight (HW)
3.

31Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

Frequency Leakage Model

1.
2. Hamming weight (HW)
3.

32Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

ax ← 1111001111001111
ax ← ax | ax

Frequency Leakage Model

1.
2. Hamming weight (HW)
3.

33Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

ax ← 1111001111001111
ax ← ax | ax

HW = 12

Frequency Leakage Model

1.
2. Hamming weight (HW)
3.

34Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

ax ← 1111001111001111
ax ← ax | ax

HW = 12

ax ← 1100110011001100
ax ← ax | ax

HW = 8

Frequency Leakage Model

1.
2. Hamming weight (HW)
3.

35Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

ax ← 1111001111001111
ax ← ax | ax

HW = 12

ax ← 1100110011001100
ax ← ax | ax

HW = 8
Runs at a higher

frequency!

Consumes less
power

Frequency Leakage Model

1.
2.
3. Bit positions!

36Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

Frequency Leakage Model

1.
2.
3. Bit positions!

37Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

ax ← 1111111100000000
ax ← ax | ax

HW = 8

Frequency Leakage Model

1.
2.
3. Bit positions!

38Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

ax ← 1111111100000000
ax ← ax | ax

HW = 8

ax ← 0000000011111111
ax ← ax | ax

HW = 8

Frequency Leakage Model

1.
2.
3. Bit positions!

39Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

ax ← 1111111100000000
ax ← ax | ax

HW = 8

ax ← 0000000011111111
ax ← ax | ax

HW = 8
Runs at a higher

frequency!

Consumes less
power

Case Study: Bit Positions

40Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

Case Study: Bit Positions

We control INPUT.

41Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

rax = rcx = … = r11 = INPUT
loop:
 or %rax,%rcx // rcx = rax | rcx
 or %rax,%rdx // rdx = rax | rdx
 or %rax,%rsi // rsi = rax | rsi
 or %rax,%rdi // rdi = rax | rdi
jmp loop

Case Study: Bit Positions

We control INPUT.
• HD = 0

42Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

rax = rcx = … = r11 = INPUT
loop:
 or %rax,%rcx // rcx = rax | rcx
 or %rax,%rdx // rdx = rax | rdx
 or %rax,%rsi // rsi = rax | rsi
 or %rax,%rdi // rdi = rax | rdi
jmp loop

Case Study: Bit Positions

We control INPUT.
• HD = 0
• HW: # of 1s in INPUT
• Bit positions:

positions of 1s in INPUT

43Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

rax = rcx = … = r11 = INPUT
loop:
 or %rax,%rcx // rcx = rax | rcx
 or %rax,%rdx // rdx = rax | rdx
 or %rax,%rsi // rsi = rax | rsi
 or %rax,%rdi // rdi = rax | rdi
jmp loop

Case Study: Bit Positions

44Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

rax = rcx = … = r11 = INPUT
loop:
 or %rax,%rcx // rcx = rax | rcx
 or %rax,%rdx // rdx = rax | rdx
 or %rax,%rsi // rsi = rax | rsi
 or %rax,%rdi // rdi = rax | rdi
jmp loop

Case Study: Bit Positions

45Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

nonlinear?

rax = rcx = … = r11 = INPUT
loop:
 or %rax,%rcx // rcx = rax | rcx
 or %rax,%rdx // rdx = rax | rdx
 or %rax,%rsi // rsi = rax | rsi
 or %rax,%rdi // rdi = rax | rdi
jmp loop

Case Study: Bit Positions

46Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

rax = rcx = … = r11 = INPUT
loop:
 or %rax,%rcx // rcx = rax | rcx
 or %rax,%rdx // rdx = rax | rdx
 or %rax,%rsi // rsi = rax | rsi
 or %rax,%rdi // rdi = rax | rdi
jmp loop

Delta freq between setting byte i
to 0xff (all 1s) and 0x00 (all 0s).

Case Study: Bit Positions

47Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

Delta freq between setting byte i
to 0xff (all 1s) and 0x00 (all 0s). rax = rcx = … = r11 = INPUT

loop:
 or %rax,%rcx // rcx = rax | rcx
 or %rax,%rdx // rdx = rax | rdx
 or %rax,%rsi // rsi = rax | rsi
 or %rax,%rdi // rdi = rax | rdi
jmp loop

Case Study: Bit Positions

48Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

1s in the most significant bytes affect
frequency (and power) more than 1s in

the least significant bytes!

rax = rcx = … = r11 = INPUT
loop:
 or %rax,%rcx // rcx = rax | rcx
 or %rax,%rdx // rdx = rax | rdx
 or %rax,%rsi // rsi = rax | rsi
 or %rax,%rdi // rdi = rax | rdi
jmp loop

Delta freq between setting byte i
to 0xff (all 1s) and 0x00 (all 0s).

More experiments in the paper!
• We also show that these effects are independent and additive.

49Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

More experiments in the paper!
• We also show that these effects are independent and additive.
• Takeaway so far: computing on

data with different HD, HW, or
bit patterns can result in
different CPU frequencies

50Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

Frequency Shows Through Timing!

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 51

Time

3.0GHz

4.0GHz

6.0GHz

Frequency

Supersingular Isogeny Key Encapsulation

• SIKE: public key encryption scheme used to secure a shared key

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 52

Supersingular Isogeny Key Encapsulation

• SIKE: public key encryption scheme used to secure a shared key
– A key generation algorithm: (pk, sk) ← KeyGen()
– An encapsulation algorithm: (k, c) ← Encaps(pk)
– A decapsulation algorithm: k← Decaps(sk, c)

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 53

Supersingular Isogeny Key Encapsulation

• SIKE: public key encryption scheme used to secure a shared key
– A key generation algorithm: (pk, sk) ← KeyGen()
– An encapsulation algorithm: (k, c) ← Encaps(pk)
– A decapsulation algorithm: k← Decaps(sk, c)

o c can be anything

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 54

SIKE is a widely studied PQC scheme

55Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

SIKE Attack Overview

56Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

c’→ Decapsulation(sk)

SIKE Attack Overview

57Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

First bit = 0

c’→ Decapsulation(sk)

SIKE Attack Overview

58Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

First bit = 0

c’→ Decapsulation(sk)

SIKE Attack Overview

59Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

First bit = 0 First bit = 1

c’→ Decapsulation(sk)

SIKE Attack Overview

60Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

First bit = 0 First bit = 1

c’→ Decapsulation(sk)

SIKE Attack Overview

61Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

First bit = 0 First bit = 1

a	=	a×𝑅!
a	=	a×𝑅"
a	=	a×𝑅#
…
a = a×𝑅$

a	=	a×0
a	=	a×𝑅"
a	=	a×𝑅#
…
a = a×𝑅$

c’→ Decapsulation(sk)

SIKE Attack Overview

62Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

First bit = 0 First bit = 1

a	=	a×𝑅!
a	=	a×𝑅"
a	=	a×𝑅#
…
a = a×𝑅$

a	=	a×0
a	=	a×𝑅"
a	=	a×𝑅#
…
a = a×𝑅$

c’→ Decapsulation(sk)

SIKE Attack Overview

63Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

First bit = 0 First bit = 1

a	=	a×𝑅!
a	=	a×𝑅"
a	=	a×𝑅#
…
a = a×𝑅$

a	=	a×0
a	=	a×𝑅"
a	=	a×𝑅#
…
a = a×𝑅$

More power
Lower frequency
Longer runtime

Less power
Higher frequency
Shorter runtime

c’→ Decapsulation(sk)

An Important Step of SIKE’s Decapsulation

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 64

Taken from SIKE’s specification
Actual implementation has no

branches

An Important Step of SIKE’s Decapsulation

m is the (static) secret key

P and Q are points included
in the ciphertext

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 65

An Important Step of SIKE’s Decapsulation

At each loop iteration,
the data flow depends

on P, Q and mi

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 66

m is the (static) secret key

P and Q are points included
in the ciphertext

An Important Step of SIKE’s Decapsulation

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 67

2U, U+V ← xDBLADD(U,V,W) where W = U - V

An Important Step of SIKE’s Decapsulation

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 68

2U, U+V ← xDBLADD(U,V,W) where W = U - V

W ∈ { T, O } 2U, (0:0) ← xDBLADD(U,V,W)

An Important Step of SIKE’s Decapsulation

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 69

2U, U+V ← xDBLADD(U,V,W) where W = U - V

W ∈ { T, O } 2U, (0:0) ← xDBLADD(U,V,W)

(0:0) is not a point

An Important Step of SIKE’s Decapsulation

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 70

2U, U+V ← xDBLADD(U,V,W) where W = U - V

W ∈ { T, O } 2U, (0:0) ← xDBLADD(U,V,W)

U or V or W = (0:0) 2U, (0:0) ← xDBLADD(U,V,W)

(0:0) is not a point

An Important Step of SIKE’s Decapsulation

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 71

An Important Step of SIKE’s Decapsulation

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 72

Iteration i

An Important Step of SIKE’s Decapsulation

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 73

𝑇 or 𝑂

Iteration i

An Important Step of SIKE’s Decapsulation

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 74

𝑇 or 𝑂(0:0)

Iteration i

An Important Step of SIKE’s Decapsulation

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 75

𝑇 or 𝑂(0:0)

2U, (0:0) ← xDBLADD(U,V,W) if W ∈ { T, O }

Iteration i

An Important Step of SIKE’s Decapsulation

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 76

Iteration i+1

An Important Step of SIKE’s Decapsulation

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 77

Iteration i+1

(0:0)

An Important Step of SIKE’s Decapsulation

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 78

(0:0)

Iteration i+1

(0:0)

An Important Step of SIKE’s Decapsulation

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 79

(0:0)(0:0) (0:0)

Iteration i+1

An Important Step of SIKE’s Decapsulation

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 80

(0:0)(0:0) (0:0)

2U, (0:0) ← xDBLADD(U,V,W) if U or V or W = (0:0)

Iteration i+1

An Important Step of SIKE’s Decapsulation

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 81

An Important Step of SIKE’s Decapsulation

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 82

𝑇 or 𝑂

An Important Step of SIKE’s Decapsulation

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 83

𝑇 or 𝑂

Adaptive Chosen-Ciphertext Attack Idea

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 84

𝜇! = (𝑚! , … ,𝑚")#

Adaptive Chosen-Ciphertext Attack Idea

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 85

𝜇%&!

𝜇! = (𝑚! , … ,𝑚")#

Adaptive Chosen-Ciphertext Attack Idea

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 86

𝜇%&! Ciphertext c’

𝜇! = (𝑚! , … ,𝑚")#

Adaptive Chosen-Ciphertext Attack Idea

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 87

𝜇%&!
𝑚% ≠ 𝑚%&!

Ciphertext c’
𝑇

𝜇! = (𝑚! , … ,𝑚")#

Adaptive Chosen-Ciphertext Attack Idea

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 88

𝜇%&!
𝑚% ≠ 𝑚%&!

Ciphertext c’
𝑇

𝜇! = (𝑚! , … ,𝑚")#

Adaptive Chosen-Ciphertext Attack Idea

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 89

𝜇%&!
𝑚% ≠ 𝑚%&!

𝑚% = 𝑚%&!

Ciphertext c’
𝑇

𝑇

𝜇! = (𝑚! , … ,𝑚")#

Adaptive Chosen-Ciphertext Attack Idea

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 90

𝜇%&!
𝑚% ≠ 𝑚%&!

𝑚% = 𝑚%&!

Ciphertext c’
𝑇

𝑇

𝜇! = (𝑚! , … ,𝑚")#

Adaptive Chosen-Ciphertext Attack Idea

• An attacker who knows the i least significant bits of m (the key)
can construct ciphertext c’ such that:

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 91

Adaptive Chosen-Ciphertext Attack Idea

• An attacker who knows the i least significant bits of m (the key)
can construct ciphertext c’ such that:

– If mi ≠ mi−1

– If mi = mi−1

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 92

Adaptive Chosen-Ciphertext Attack Idea

• An attacker who knows the i least significant bits of m (the key)
can construct ciphertext c’ such that:

– If mi ≠ mi−1

– If mi = mi−1

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 93

Data flow has low HW and low HD à
lower power consumption à

higher frequency à
shorter runtime!

Adaptive Chosen-Ciphertext Attack Idea

• An attacker who knows the i least significant bits of m (the key)
can construct ciphertext c’ such that:

– If mi ≠ mi−1

– If mi = mi−1

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 94

Data flow has low HW and low HD à
lower power consumption à

higher frequency à
shorter runtime!

Data flow does not have low HW and low HD
à higher power consumption à

lower frequency à
longer runtime!

Target Implementation

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 95

• Cloudflare’s CIRCL (Go)
• Microsoft‘s PQCrypto-SIDH (C)

– NIST Post-Quantum Cryptography competition submission

Frequency and Power Measurement

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 96

Remote Timing Attack Model

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 97

Client Server

Remote Timing Attack Model

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 98

Ciphertext c’

Client Server

Decap(sk, c’)

CIRCL
PQCrypto-SIDH

Remote Timing Attack Model

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 99

Ciphertext c’

Client Server

Decap(sk, c’)

ACK!

How long it takes to
finish n concurrent
requests

CIRCL
PQCrypto-SIDH

Remote Timing Attack Results

CIRCL:
Recovered full
key in 36 hours

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 100

Remote Timing Attack Results

CIRCL:
Recovered full
key in 36 hours

PQCrypto-SIDH:
Recovered full
key in 89 hours

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 101

Discussion & Takeaway

102Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

Discussion & Takeaway

103Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

if secret == 1 then
routine();

res = x * secret / 255.0f

No secret-dependent
branches

No secret inputs to
variable-time instructions

No secret-dependent
memory accesses

state = array[secret]

Discussion & Takeaway
• Current practices for how to write constant-time code are no

longer sufficient to guarantee constant-time execution.

104Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

if secret == 1 then
routine();

res = x * secret / 255.0f

No secret-dependent
branches

No secret inputs to
variable-time instructions

No secret-dependent
memory accesses

state = array[secret]

Discussion & Takeaway
• Current practices for how to write constant-time code are no

longer sufficient to guarantee constant-time execution.
• Hertzbleed turns power leakage into timing leakage.

105Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

if secret == 1 then
routine();

res = x * secret / 255.0f

No secret-dependent
branches

No secret inputs to
variable-time instructions

No secret-dependent
memory accesses

state = array[secret]

Discussion & Takeaway

106Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

𝑠𝑒𝑐𝑜𝑛𝑑𝑠
𝑝𝑟𝑜𝑔𝑟𝑎𝑚 =

𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠
𝑝𝑟𝑜𝑔𝑟𝑎𝑚 ×

𝑐𝑦𝑐𝑙𝑒𝑠
𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 ×

𝑠𝑒𝑐𝑜𝑛𝑑𝑠
𝑐𝑦𝑐𝑙𝑒

Discussion & Takeaway

107Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

𝑠𝑒𝑐𝑜𝑛𝑑𝑠
𝑝𝑟𝑜𝑔𝑟𝑎𝑚 =

𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠
𝑝𝑟𝑜𝑔𝑟𝑎𝑚 ×

𝑐𝑦𝑐𝑙𝑒𝑠
𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 ×

𝑠𝑒𝑐𝑜𝑛𝑑𝑠
𝑐𝑦𝑐𝑙𝑒

All prior timing attacks

Discussion & Takeaway

108Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

𝑠𝑒𝑐𝑜𝑛𝑑𝑠
𝑝𝑟𝑜𝑔𝑟𝑎𝑚 =

𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠
𝑝𝑟𝑜𝑔𝑟𝑎𝑚 ×

𝑐𝑦𝑐𝑙𝑒𝑠
𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 ×

𝑠𝑒𝑐𝑜𝑛𝑑𝑠
𝑐𝑦𝑐𝑙𝑒

HertzbleedAll prior timing attacks

Conclusion
• Frequency leaks information about the data

values being processed.
• SIKE is vulnerable to a new CCA attack that can

be exploited remotely using Hertzbleed.
• Current practices for how to write constant-

time code are no longer sufficient to guarantee
constant time execution.

109Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

www.hertzbleed.com

http://www.hertzbleed.com/

