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Remote Timing Attacks

Hertzbleed: a New Class of Attacks

https://github.com/h2lab/smartleia-demo
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Remote Timing Attacks

Hertzbleed: a New Class of Attacks

Hertzbleed: exploiting
dynamic frequency scaling (DVFS)

https://github.com/h2lab/smartleia-demo
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Frequency Depends on Data
• Only vary the data values being processed (“Input”).
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Function Sum(first, second):
a = first
b = second
sum = a + b
return sum
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Test 1 (CVE 1 number):
first = 2022
second = 23823
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Function Sum(first, second):
a = first
b = second
sum = a + b
return sum

Test 1 (CVE 1 number):
first = 2022
second = 23823

Test 2 (CVE 2 number):
first = 2022
second = 24436

Which Runs at a Higher Frequency?

We construct a leakage model
to answer this question.
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Frequency Leakage Model
Three independent effects:
1. Hamming distance (HD)
2. Hamming weight (HW)
3. Bit positions!
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HD = 6
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ax ← 0000011111111000

HD = 6
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ax ← 1111001111001111
ax ← ax | ax
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ax ← 1111111100000000
ax ← ax | ax

HW = 8
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ax ← 1111111100000000
ax ← ax | ax

HW = 8

ax ← 0000000011111111
ax ← ax | ax

HW = 8
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ax ← 1111111100000000
ax ← ax | ax

HW = 8

ax ← 0000000011111111
ax ← ax | ax

HW = 8
Runs at a higher 

frequency!

Consumes less 
power
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Case Study: Bit Positions

We control INPUT.
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rax = rcx = … = r11 = INPUT
loop:
  or %rax,%rcx    // rcx = rax | rcx
  or %rax,%rdx    // rdx = rax | rdx
  or %rax,%rsi    // rsi = rax | rsi
  or %rax,%rdi    // rdi = rax | rdi
jmp loop
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Case Study: Bit Positions

We control INPUT.
• HD = 0
• HW: # of 1s in INPUT
• Bit positions: 

positions of 1s in INPUT
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nonlinear?

rax = rcx = … = r11 = INPUT
loop:
  or %rax,%rcx    // rcx = rax | rcx
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  or %rax,%rsi    // rsi = rax | rsi
  or %rax,%rdi    // rdi = rax | rdi
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rax = rcx = … = r11 = INPUT
loop:
  or %rax,%rcx    // rcx = rax | rcx
  or %rax,%rdx    // rdx = rax | rdx
  or %rax,%rsi    // rsi = rax | rsi
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jmp loop

Delta freq between setting byte i
to 0xff (all 1s) and 0x00 (all 0s). 
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Delta freq between setting byte i
to 0xff (all 1s) and 0x00 (all 0s). rax = rcx = … = r11 = INPUT

loop:
  or %rax,%rcx    // rcx = rax | rcx
  or %rax,%rdx    // rdx = rax | rdx
  or %rax,%rsi    // rsi = rax | rsi
  or %rax,%rdi    // rdi = rax | rdi
jmp loop
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1s in the most significant bytes affect 
frequency (and power) more than 1s in 

the least significant bytes!

rax = rcx = … = r11 = INPUT
loop:
  or %rax,%rcx    // rcx = rax | rcx
  or %rax,%rdx    // rdx = rax | rdx
  or %rax,%rsi    // rsi = rax | rsi
  or %rax,%rdi    // rdi = rax | rdi
jmp loop

Delta freq between setting byte i
to 0xff (all 1s) and 0x00 (all 0s). 



More experiments in the paper!
• We also show that these effects are independent and additive.
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More experiments in the paper!
• We also show that these effects are independent and additive.
• Takeaway so far: computing on

data with different HD, HW, or
bit patterns can result in
different CPU frequencies
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Frequency Shows Through Timing!

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 51

Time

3.0GHz

4.0GHz

6.0GHz

Frequency



Supersingular Isogeny Key Encapsulation

• SIKE: public key encryption scheme used to secure a shared key
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Supersingular Isogeny Key Encapsulation

• SIKE: public key encryption scheme used to secure a shared key
– A key generation algorithm:  (pk, sk) ← KeyGen()
– An encapsulation algorithm:  (k, c) ← Encaps(pk)
– A decapsulation algorithm: k← Decaps(sk, c)
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Supersingular Isogeny Key Encapsulation

• SIKE: public key encryption scheme used to secure a shared key
– A key generation algorithm:  (pk, sk) ← KeyGen()
– An encapsulation algorithm:  (k, c) ← Encaps(pk)
– A decapsulation algorithm: k← Decaps(sk, c)

o c can be anything
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SIKE is a widely studied PQC scheme
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SIKE Attack Overview
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First bit = 0 First bit = 1

a	=	a×𝑅!
a	=	a×𝑅"
a	=	a×𝑅#
…
a = a×𝑅$

a	=	a×0
a	=	a×𝑅"
a	=	a×𝑅#
…
a = a×𝑅$

c’→ Decapsulation(sk)
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First bit = 0 First bit = 1

a	=	a×𝑅!
a	=	a×𝑅"
a	=	a×𝑅#
…
a = a×𝑅$

a	=	a×0
a	=	a×𝑅"
a	=	a×𝑅#
…
a = a×𝑅$

More power
Lower frequency
Longer runtime

Less power
Higher frequency
Shorter runtime

c’→ Decapsulation(sk)
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Taken from SIKE’s specification
Actual implementation has no

branches



An Important Step of SIKE’s Decapsulation

m is the (static) secret key

P and Q are points included 
in the ciphertext
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An Important Step of SIKE’s Decapsulation

At each loop iteration, 
the data flow depends 

on P, Q and mi
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m is the (static) secret key

P and Q are points included 
in the ciphertext
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2U, U+V ← xDBLADD(U,V,W) where W = U - V
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2U, U+V ← xDBLADD(U,V,W) where W = U - V

W ∈ { T, O } 2U, (0:0) ← xDBLADD(U,V,W)
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2U, U+V ← xDBLADD(U,V,W) where W = U - V

W ∈ { T, O } 2U, (0:0) ← xDBLADD(U,V,W)

(0:0) is not a point
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2U, U+V ← xDBLADD(U,V,W) where W = U - V

W ∈ { T, O } 2U, (0:0) ← xDBLADD(U,V,W)

U or V or W = (0:0) 2U, (0:0) ← xDBLADD(U,V,W)

(0:0) is not a point
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Iteration i
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𝑇 or 𝑂

Iteration i
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𝑇 or 𝑂(0:0)

Iteration i
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𝑇 or 𝑂(0:0)

2U, (0:0) ← xDBLADD(U,V,W) if W ∈ { T, O }

Iteration i
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Iteration i+1
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Iteration i+1

(0:0)
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(0:0)

Iteration i+1

(0:0)
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(0:0)(0:0) (0:0)

Iteration i+1
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(0:0)(0:0) (0:0)

2U, (0:0) ← xDBLADD(U,V,W) if U or V or W = (0:0) 

Iteration i+1
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𝑇 or 𝑂
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𝑇 or 𝑂



Adaptive Chosen-Ciphertext Attack Idea
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𝜇! = (𝑚! , … ,𝑚")#



Adaptive Chosen-Ciphertext Attack Idea

Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella 85

𝜇%&!

𝜇! = (𝑚! , … ,𝑚")#
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𝜇%&! Ciphertext c’

𝜇! = (𝑚! , … ,𝑚")#
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𝜇%&!
𝑚% ≠ 𝑚%&!

Ciphertext c’
𝑇

𝜇! = (𝑚! , … ,𝑚")#
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Adaptive Chosen-Ciphertext Attack Idea

• An attacker who knows the i least significant bits of m (the key) 
can construct ciphertext c’ such that:
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Data flow has low HW and low HD à
lower power consumption à

higher frequency à
shorter runtime!

Data flow does not have low HW and low HD 
à higher power consumption à

lower frequency à
longer runtime!



Target Implementation
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• Cloudflare’s CIRCL (Go)
• Microsoft‘s PQCrypto-SIDH (C)

– NIST Post-Quantum Cryptography competition submission



Frequency and Power Measurement
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Remote Timing Attack Model
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Remote Timing Attack Model
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Ciphertext c’

Client Server
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Remote Timing Attack Results

CIRCL:
Recovered full 
key in 36 hours
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Remote Timing Attack Results

CIRCL:
Recovered full 
key in 36 hours

PQCrypto-SIDH:
Recovered full 
key in 89 hours
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Discussion & Takeaway
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if secret == 1 then
routine();

res = x * secret / 255.0f

No secret-dependent
branches

No secret inputs to
variable-time instructions

No secret-dependent
memory accesses

state = array[secret]



Discussion & Takeaway
• Current practices for how to write constant-time code are no 

longer sufficient to guarantee constant-time execution.
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Discussion & Takeaway
• Current practices for how to write constant-time code are no 

longer sufficient to guarantee constant-time execution.
• Hertzbleed turns power leakage into timing leakage.
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Conclusion
• Frequency leaks information about the data 

values being processed.
• SIKE is vulnerable to a new CCA attack that can 

be exploited remotely using Hertzbleed.
• Current practices for how to write constant-

time code are no longer sufficient to guarantee 
constant time execution.
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www.hertzbleed.com

http://www.hertzbleed.com/

